This study examined the offshore eel trap fishing process using one year of fishing logs and fishermen’s insights to identify
key operational challenges and propose equipment improvement for greater efficiency and safety. Conger eel catches varied
significantly by season, depth, and temperature, peaking in winter at 85–90 m and 23°C. The western waters of Jeju Island
were identified as a major fishing ground, with the highest catch recorded in November and the lowest in July, reflecting
seasonal trends. Each fishing operation deployed about 10,000 traps, with an average loss of 38 traps, posing economic
concerns. The process involved intensive manual labor in bait preparation, trap retrieval, catch separation, line loading, and
unloading, leading to high physical demands and safety risks. To address these issues, the study proposed automation through
the development of a line loading device, trap cleaning device, bait processing machine, and automatic catch separator.
These innovations could reduce the labor force required by one to two workers per process, alleviate workloads, and enhance
resource management. By integrating quantitative logbook analysis with field-based knowledge, this study offers practical
value. Further research is recommended on automation development, cost-effectiveness, and field validation to support safer
and more sustainable eel trap fisheries.