Existing reinforced concrete building structures have seismically-deficient details on columns and beam–column joints; therefore, accurate modeling of structural behavior is required for reliable seismic performance assessment. This study aims to investigate the differences in dynamic responses resulting from modeling variations through developing four distinct numerical models. Separate models were established to simulate flexural and shear failures of columns and beam–column joints. Using these component-level models, a structural analysis model of the target building was constructed, and nonlinear time-history analyses were performed to evaluate seismic performance. Based on the simulated dynamic behavior of the target building, soft-story mechanisms were identified, and it was identified and confirmed that column behavior plays a dominant role in governing the overall structural response.