An Experimental Study on the Compressive Strength of Lattice Structures according to Additive Manufacturing Orientations
This study examines the effects of additive manufacturing (AM) orientations and support structures on the compressive strength of lattice structures. Test specimens were fabricated using a selective laser melting (SLM) process with AlSi10Mg material under three conditions: horizontally aligned (0°), tilted at 45°, and supported. Compression tests were conducted using a universal testing machine (UTM) and Digital Image Correlation (DIC) to evaluate mechanical behavior. The results showed that the supported horizontal specimens exhibited the highest compressive strength, while the 45° tilted specimens had the lowest due to interlayer separation and localized failures. The findings highlight the significance of build orientation and support design in optimizing AM lattice structures. Future research should explore various lattice configurations, material selections, and post-processing effects to further enhance structural performance.