검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications.
        4,200원
        2.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06–0.12 mm), laser power (225–325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress–strain data from the compression test and analysis are compared.
        4,000원
        3.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.
        4,000원
        5.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.
        4,000원
        6.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources.The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use ofmaterials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorptionof incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap.Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the 1st and 2nd generation solarcells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using anSi quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an SiOx matrix system was investigatedand analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QDSLS) were prepared by alternating deposition of Si rich oxide (SRO; SiOx (x=0.8, 1.12)) and SiO2 layers using RF magnetronco-sputtering and subsequent annealing at temperatures between 800 and 1,100oC under nitrogen ambient. Annealing temperaturesand times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-rayphotoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at 1,100oC for onehour. Transmission electron microscopy (TEM) images clearly showed SRO/SiO2 SLS and Si QDs formation in each 4, 6, and8nm SRO layer after annealing at 1,100oC for two hours. The systematic investigation of precipitation behavior of Si QDsin SiO2 matrices is presented.
        4,000원
        7.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        왁스 또는 긴사슬을 가지는 탄화수소는 동물, 식물, 광물 또는 합성에 의해 만들어 진다. 오일-왁스 겔은 립스틱과 같은 다양한 화장품 분야에 사용되어지고 있다. 예를 들면, 립스틱의 사용감촉은 오일-왁스 겔의 광택 정도에 크게 영향을 받는다. 여러 논문에서 단일 용매 또는 혼합된 용매에서의 왁스 구조에 대해서 연구가 진행되었다. 그러나 왁스 구조에 대한 연구 논문은 극히 소수에 불과하다. 이 논문의 목적은 세레신 왁스와 또 다른 왁스를 사용하여 오일-왁스겔에서의 광택과 왁스 구조에 대한 관계를 연구하였다. 최근 들어 입술피부에서의 광택 효과는 아름다움의 척도로 알려지고 있다. 광택효과는 오일-왁스 메트릭스가 형성될 때 메트릭스 구조의 변화와 오일의 성질에 의해 좌우된다. 최근 연구에서는 세레신 왁스와 마이크로크리스탈린 왁스로부터 얻어진 오일-왁스 겔에서의 왁스 구조변화와 그에 따른 광택에 대한 영향을 보고하고 있다.