검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Cu2ZnSnS4 (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of 300˚C without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to 1μm. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.
        4,000원
        2.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and Si3N4 layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the 840 cm-1 peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the 1100 cm-1 peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-N4 bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at 1100˚C for at least one hour is necessary to precipitate the silicon quantum dots in the SiNx matrix.
        4,000원
        3.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources.The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use ofmaterials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorptionof incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap.Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the 1st and 2nd generation solarcells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using anSi quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an SiOx matrix system was investigatedand analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QDSLS) were prepared by alternating deposition of Si rich oxide (SRO; SiOx (x=0.8, 1.12)) and SiO2 layers using RF magnetronco-sputtering and subsequent annealing at temperatures between 800 and 1,100oC under nitrogen ambient. Annealing temperaturesand times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-rayphotoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at 1,100oC for onehour. Transmission electron microscopy (TEM) images clearly showed SRO/SiO2 SLS and Si QDs formation in each 4, 6, and8nm SRO layer after annealing at 1,100oC for two hours. The systematic investigation of precipitation behavior of Si QDsin SiO2 matrices is presented.
        4,000원