논문 상세보기

RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구 KCI 등재 SCOPUS

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/297144
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and Si3N4 layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the 840 cm-1 peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the 1100 cm-1 peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-N4 bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at 1100˚C for at least one hour is necessary to precipitate the silicon quantum dots in the SiNx matrix.

저자
  • 하린 | Ha, Rin
  • 김신호 | 김신호
  • 이현주 | 이현주
  • 박영빈 | 박영빈
  • 이정철 | 이정철
  • 배종성 | 배종성
  • 김양도 | 김양도