In this study, in order to identify the vibration characteristics of the process control cabinet, as a basic study for evaluating the seismic performance of nuclear power plant structures, a cabinet vibration test equipment, sliding base, and measurement system were constructed. The reliability of the base was verified by utilizing ODS and phase data to determine how the cabinet deforms under seismic conditions. In addition, the cabinet was subjected to excitation frequencies from 8 Hz to 15 Hz in order to examine the changes in the natural frequency of the cabinet according to the two types of sliding base motion and the cabinet door open/close status. The vibration characteristics of the empty cabinet were investigated experimentally to examine the cabinet excitation characteristics and changes in natural frequency. Since the structural rigidity of the cabinet changes depending on the excitation conditions and door opening/closing, the natural frequency and response size of the cabinet change. Since the door opening is a condition that greatly amplifies the cabinet vibration response, it causes structural defects and greatly affects the changes in natural frequency.