Finite Element Analysis for Identification of Flange Failure and Design Improvement in Turbine Housings
In this study, structural analysis was performed to select the optimal design shape through failure identification and design changes in turbine housing. Damage in the inlet flange is considered to be high cycle fatigue due to the vibration excitation in the engine full load test. Therefore, the FE analyses were performed natural vibration analysis and frequency response analysis for the initial shape and design change models. The stress magnitudes were obtained as a function of frequency through frequency response analysis according to engine vibration excitation. As a result, the dynamic stiffness of Case (1) increased by approximately 3.6% compared to the initial model, and Case (2) increased by 4.6%. In addition, the stress magnitude was greatly reduced in the design improvement. Therefore, the model with only the flange thickness increased is thought to be optimal design for securing the durability of the turbine housing.