This study investigates the vitrification of blast furnace slag (BFS) by adjusting the content of steel slag and the added amount of E-glass. SaEb glasses were prepared with a composition of x wt% BFS and (100-x) wt% E-glass (x = 10, 20, 30, 40, and 50). Each composition was melted in a platinum crucible under atmospheric conditions at 1,500 °C for 2 h, and transparent glasses with a transmittance exceeding 75 % were fabricated. All SaEb glasses exhibit an amorphous pattern, indicating successful vitrification. We also analyzed their optical, thermal, and physical properties, including Fourier transform infrared spectroscopy (FT-IR), glass transition temperature (Tg), and x-ray pattern. As the E-glass content increased, the glass transition temperature of blast furnace slag-based glass decreased from 765 °C to 734 °C due to the weakening of the SiO4 unit structure. In all compositions, the glass transition–crystallization temperature difference exceeded 220 °C, confirming the glasses stability for slag fiber applications. The blast furnace slag-based glass exhibits potential for application in slag fiber production, and is expected to provide fundamental data for future studies on related materials.