Noninvasive low intensity ultrasound has been shown to be an effective means of accelerating bone fracture repair in both animal and clinical studies. The effects of ultrasound stimulation on bone repair after fibular osteotomy were assessed in a rabbit fibular fracture model. Bilateral closed fibular fractures were made in skeletally mature male White Japanese rabbits. In this study, 24 subjects were randomly divided into 2 groups: experimental group 1 (n=12), and experimental group 2 (n=12). Experimental group 1 received 0.875 MHz continuous ultrasound and Experimental group 2 was treated with 3 MHz continuous u1trasound. The ultrasound intensity was 50 and treatment time was 10 minutes for every session in both groups. In each rabbit, one fibula served as a control and the other was subjected to ultrasound treatment 5 times per week for 3 weeks. After 3 weeks, rabbits were sacrificed and the ratios of the area between the trabeculae and bone marrow of the fibulae were calculated. At the end of the experimental period, 14 of the 24 rabbits were excluded due to complications from surgery or inadequate fracture status for this study. There was no statistically significant difference in the trabeculae area between experimental leg and control leg in experimental group 1 and experimental group 2 (p>0.05). And there was also no statistic-statistically significant difference between experimental group 1 and experimental group 2 according to ultrasound treatment frequencies, 0.875 MHz and 3 MHz (p>0.05). These data suggest that in Japanese white rabbits, low intensity ultrasound stimulation does not facilitate fracture repair nor is there any difference in fracture repair results between ultrasound frequencies, 0.875 MHz and 3 MHz.