본 연구에서는 튜브 구조시스템의 역학적 특징과 거동에 대한 이론과 모델 연구 등을 고찰하고, 단위 모듈 시스템의 적정성, 최적 위치. 최적 형태를 파악하고, 각 부재의 강성증감에 따른 부재 변수를 고려한 복합 튜브 구조시스템을 통계학적인 개념을 도입한 민감도 방법에 의한 해석을 수행하였다. 구체적인 방법에서 복합 튜브 구조시스템의 전단지연 현상과 횡적 거동에 대한 특성을 비교 고찰하였고, 또한 그 결 과 치를 이용하여 향후 있을 초고층 복합 구조시스템의 설계와 실무에 대한 기초 자료를 제시하는데 연구의 목표를 두었다. 연구 결과로는 골조 튜브 구조시스템만으로는 초고층 건물의 횡적 거동에는 효과적으로 대치하지 못하므로, 복합 튜브 구조시스템을 구성하여 횡하중 저항요소로 구성부재를 다양하게 변화시켜 검토한 결과, 각 부재 물량대비 가새 부재가 가장 큰 횡적 거동에 대한 영향 요소로 파악되었다. 골조 튜브구조 는 물량대비 보가 기둥보다 횡변위 영향에 미치는 민감도의 정도가 크게 나타났고, 가새 튜브구조시스템의 경우는 가새가 물량대비 기둥 및 보와 비교하면 가장 민감한 것으로 나타났다.
본 연구의 목적은 볼접합부를 갖는 원형강관의 좌굴실험 결과를 토대로 하여 국내외 압축재 설계규준과 비교 평가함으로써 부재의 좌굴내력 및 좌굴길이 계수의 안전성과 합리성을 조사하는 것이다. 좌굴성능 평가를 위해 선정된 원형강관은 ∅48.6×2.8t와 ∅60.5×3.2t 및 ∅ 76.3×3.2t이다. 국내외 압축재 설계를 위해 우리나라의 하중저항계수 설계법(LRFD), 일본의 한계상태 설계법(LSD) 및 영국의 BS5950 규준을 적용하였다. 본 연구에서는 선행연구의 실험결과와 국내외 설계규준과의 좌굴성능을 비교 분석하였다. 그 결과를 요약해 보면 다음과 같다. 각 국의 압축재 설계규준에서 부재의 전체길이를 좌굴길이로 적용한 결과 실험에 의한 좌굴내력의 64%∽89% 정도로 나타났다. 따라서 안전을 위해 현재 설계 규준식에 준하여 부재설계를 수행하는 것이 바람직하다고 판단되었다. 실험결과 측정된 좌굴내력은 우리나라, 일본 및 영국의 압축재 설계규준에서 좌굴길이를 순수 원형강관만으로 고려한 좌굴내력 값에 비해 1.02배∽1.43배 높은 것으로 나타났다. 따라서 스페이스 프 레임 구조물 설계에 있어 개별부재 좌굴내력은 절점 간 길이가 아닌 순수 원형강관의 길이로 좌굴계수를 고려할 필요가 있을 것으로 보여진다.
본 연구에서는 용사기법에 의해 콘크리트 표면에 금속피막을 형성하는 새로운 마감 의장기법의 가능성을 검토하기 위하여, 콘크리 트의 함수율 변화에 따른 금속피막의 부착성능에 대하여 실험적인 연구를 수행하였다. 그 결과, 선재의 색은 용사 후에도 변하지 않는 것을 알 있었고, 콘크리트 부착강도 기준인 2.5 MPa를 확보하기 위한 하지 콘크리트의 함수율을 10% 이하로 관리하면 금속피막의 부착강도눈 확보되 는 것으로 판단된다. 또한, 콘크리트와 금속피막의 부착강도를 증진시키기 위해서는 표면강화제에 의한 콘크리트 표면강화와 함께 금속피막 을 봉공처리제로 봉공하는 것이 매우 유효한 것을 알 수 있었다.
리모델링 시장이 커짐에 따라 품질이 우수한 건축물의 내장재 및 외장재들이 개발되고 있다. 개발된 내장재 및 외장재를 건축물의 구조체에 시공하기 위해서 구조체에 하지 철물을 설치하여야 한다. 건축물의 내장재 및 외장재 설치, 데크, 무대 및 마루 등의 시공 시 지지해주 는 하부 구조물을 하지철물이라 한다. 하지 철물은 수평재와 수직재를 현장에서 용접 접합을 하여 구조체에 설치하는 방법이 주로 사용되었다. 일반적인 용접접합 방식의 시공은 용접 불씨에 의한 화재 발생으로 인명 및 재산 손실 문제와 전문용접공 부족으로 인한 비전문 용접공 시공에 따른 내구성 저하 문제 등이 발생하고 있다. 하지철물의 시공방법도 안전사고 및 시공의 용이성을 위하여 용접 접합 방법에서 무용접 접합 방법 으로 개선되어지고 있다. 이는 화재예방 가설재와 소화장비 및 인원이 불필요하고 볼트조립으로만 시공이 가능하여 인건비 절감과 공기단축 이 가능하다. 이에 용접을 사용하지 않는 무용접 하지 트러스 공법을 이용하여 접합부 거동을 실험하여 검증하고자 한다. 또한, 무용접 접합방 법으로 시공 시 볼트 체결부분에서 틀어짐 현상이 발생하기도 하여 이를 보완하는 방법으로 각관, 유격방지 브라켓, 파스터, 홈볼트 체결을 통 하여 일반 볼트접합인 각관, 화스너, 홈볼트 조립방법에서 좌우간의 틀어짐 현상을 방지하고 부재간의 미끄러짐 현상을 제어할 수 있도록 하는 시스템을 적용하여 접합부의 거동을 평가하고자 한다. 그 결과 무용접 접합방식의 하지철물 골조는 지진하중저항시스템에서 내진등급에 따라 요구되는 허용 층간변위각 0.01∼0.02 보다 매우 큰 부재각까지 변형한 것으로 나타나 충분한 변형성능을 확보하고 있음을 알 수 있었다.
이형철근과 FRP 보강근의 복합 이중근을 갖는 FRC 보의 휨성능을 평가하기 위하여 실험이 수행되었다. 인장근의 종류(CFRP 보강 근, GFRP 보강근, 철근)과 PVA 섬유 혼입률(0.5%, 0%)을 주요변수로 한 7개의 실험체를 제작하였다. 유한요소해석을 통하여 FRC 보의 균열 및 휨거동을 예측하기 위한 해석적 방법이 제안되고 분석되었다. 복합 이중근을 가지는 실험체들에서 철근으로 이중근을 가지는 실험체가 철근과 FRP 보강근을 이단으로 배치한 실험체들에 비하여 26∼34% 균열하중이 큰 것으로 나타났다. 최대 휨강도에서는 복합 이중근을 가지는 실험체들 중 CFRP 보강근을 최외측으로 한 실험체가 가장 큰 내력을 나타내었다. 해석과 실험을 통한 휨강도를 비교한 결과, 강도비는 평균 1.2, 표준편차 0.085, 최대 오차율은 22% 등으로 나타났다. 이러한 결과에서 본 연구의 유한요소해석방법이 복합 이중근을 가지는 보의 실제 거 동을 효과적으로 표현할 수 있음을 알 수 있다.
기둥축소량을 발생시키는 원인과 현재까지 연구되어온 코드에 대하여 고찰하였다. 코드에서 언급하고 있는 내용들은공시체의 건조수축, 크리프, 압축강도 및 탄성계수 그리고 구조해석에서 산출되는 탄성변형을 다루고 있으나, 장기간의 모니터링에 의해 나타나는 온도에 의한 변형은 기존의 연구에 의해 발생되는 요소들에 의한 것보다 축소량이 적게 발생하는 것을 알 수 있었다. 하지만 기존의 연구에서는 온도에 의한 변형에 대해서는 고려하지 않고 건조수축, 크리프 및 탄성변형에 대하여 다루고 있는 것을 확인 할 수 있고, 공시체의 실험에 대해서는 온 도에 대한 항목은 습도에 대한 항으로 대체하여 다루고 있음을 알 수 있다. 이에 대해 제안식에 의한 보정수치는 축소량 산정시 상부방향 4.9 mm 와 하부방향 1.0 mm의 오차를 나타내어 측정에 의한 수치와 거의 일치하는 것으로 나타났다. 따라서, 기존의 기둥축소량 산정에 있어서 누락 될 수 있는 온도에 대하여 추가적으로 더 연구하여 그 영향계수를(수직온도보정계수,) 고려하고, 공시체의 시험뿐만 아니라 구조체의 온도 보정에 관한 기준 보완이 필요한 것으로 파악되었다.