검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37,645

        541.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy storage for sustainable development and progress of power production industries is vitally important. The energy storage devices are under extensive research from last three decades to ensure the hand-on-hand coordination with power supply phenomenon and to reduce the energy loses in lines. The cost-effective materials are still highly demanding as an electrode material for energy storage devices. Biomass-derived carbon materials are best candidates due to their low cost, relatively high abundance, pollution-free nature. Here, we are reporting a facile two-step green approach to convert Himalayan horse chestnuts (HHCNs) into activated carbon materials. In first step, grinding and pyrolysis of the HHCNs were carried out, and then activation was performed using KOH to enhance the pore density and surface area. HHCNs-derived carbon was utilized as an electrode in electrical double-layer capacitors (EDLCs) with 1 M H2SO4 as an electrolyte. The macroporous structure along with hierarchical porous network acts as an efficient source of transportation of charges across the electrode and separator. Cyclic voltammetry test was taken from 10 to 100 mV/s current and within a range of 0–1 V applied potential; approximately rectangular CV shown mirror response towards current and shown typical EDLCs properties. The proximate analysis confirms the presence of heteroatoms like sulfur, oxygen, and nitrogen which act as carbon dopants. The wettability of HHCNs-derived carbon enhanced due to the various types of oxygen functionalities inherited from the lignin skeletal part. The nitrogen content is primarily responsible for the pseudo-capacitive behavior of HHCNs-codoped carbon. HHCNs-derived activated carbon materials has emerged as a promising electrode material for energy storage applications.
        4,000원
        542.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we synthesized a reduced graphene oxide-manganese dioxide (rGO-MnO2) composite material using a one-step hydrothermal method and used it as a transducer layer in solid-state ion-selective electrodes (ISEs) for monitoring potassium and sodium ions in sweat. The rGO-MnO2 composite was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), revealing its unique surface morphology and crystalline structures. Electrochemical characterizations, including cyclic voltammetry (CV) and potential response testing, demonstrated the excellent performance of the rGO-MnO2 composite material as a transducer layer in ISEs. The fabricated electrodes displayed good linear responses to potassium and sodium ions, with a voltage response of 36.4 mV and 47.6 mV per unit concentration change, respectively. The electrodes also exhibited improved resistance to gas interference, such as O2, N2, and CO2. We utilized these ISEs to measure changes in potassium and sodium ion concentrations in sweat samples collected over nine days of exercise, demonstrating the practical application of the rGO-MnO2-based ISEs. This work highlights the potential of using graphene/metal oxide composites as solid contact materials in ISEs for cost-effective and stable ion sensing applications.
        4,000원
        543.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Organic wastewater causes serious environmental pollution, and catalytic oxidation is promising technique for wastewater treatment. Developing green and effective catalysts is currently challenging. In this work, green synthesis of nano zerovalent iron loaded onto porous biochar derived from popcorn is conducted, and catalytic oxidation of Rhodamine B (RhB) is evaluated in the presence of H2O2. Effect of process factors is examined on catalytic performance for RhB removal. The mechanism of RhB removal is discussed by characterizations (Fourier transform infrared spectra and Raman) and UV–vis spectra. RhB removal is improved with high catalyst dosage, low initial RhB concentration, and high reaction temperature, while it is slightly influenced by carbonization temperature of biochar, H2O2 dosage and pH value. Under conditions of BC-250 1.0 g/L, H2O2 0.01 mol/L, pH 6.1, and temperature 30 °C, the removal rate of RhB is 92.27% at 50 min. Pseudo first-order kinetics is used to fitting experimental data, and the activation energy for RhB removal in BC-250/H2O2 system is 39 kJ/mol. RhB removal in BC-250/H2O2 system can be attributed to adsorption effect and catalytic oxidation with the dominant role of hydroxyl radical. This work gives insights into catalytic oxidation of organic wastewater using green catalyst.
        4,200원
        544.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The widespread and extensive use of glyphosate in agriculture has raised concerns about its potential impact on the quality and safety of agricultural products. Conventional detection methods require long analysis times, making them impractical for the rapid detection of large quantities of samples. Therefore, developing a fast and simple detection system for glyphosate pesticide residues is urgent. In this study, the development of a facile fluorescence probe synthesized using a simple one-pot hydrothermal method for the determination of glyphosate is an important step toward addressing the need for a fast and simple detection system. The present sensor was created using bovine serum albumin (BSA) as a precursor, and the sensor operates by producing an “off–on” fluorescent signal. The bovine albumin-derived BSA-CDs emitted light yellow fluorescence, but this fluorescence was quenched (or suppressed) by the presence of Cu2+ ions. However, the fluorescence can be restored by the presence of glyphosate, which interacts with the Cu2+ ions to form a complex and release the BSACDs from suppression. The functional groups in glyphosate can capture Cu2+ and break the BSA-CDs/Cu2+ combinatorial system. The BSA-CDs/Cu2+ fluorescence quenching system had good selectivity for glyphosate. The detection limit of the BSA-CD/Cu2+ fluorescence sensor was 0.05 μg/mL. This developed method was utilized to successfully detect glyphosate in Chinese wheat. The average recoveries ranged from 98.9 to 100.7%, with a relative standard deviation < 3.0%, showing good prospects for practical applicability.
        4,200원
        545.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A thermochemical conversion method known as hydrothermal carbonization (HTC) is appealing, because it may convert wet biomass directly into energy and chemicals without the need for pre-drying. The hydrochar solid product’s capacity to prepare precursors of activated carbon has attracted attention. HTC has been utilized to solve practical issues and produce desired carbonaceous products on a variety of generated wastes, including municipal solid waste, algae, and sludge in addition to the typically lignocellulose biomass used as sustainable feedstock. This study aims to assess the in-depth description of hydrothermal carbonization, highlighting the most recent findings with regard to the technological mechanisms and practical advantages. The process parameters, which include temperature, water content, pH, and retention time, determine the characteristics of the final products. The right setting of parameters is crucial, since it significantly affects the characteristics of hydrothermal products and opens up a range of opportunities for their use in multiple sectors. Findings reveal that the type of precursor, retention time, and temperature at which the reaction is processed were discovered to be the main determinants of the HTC process. Lower solid products are produced at higher temperatures; the carbon concentration rises, while the hydrogen and oxygen content declines. Current knowledge gaps, fresh views, and associated recommendations were offered to fully use the HTC technique's enormous potential and to provide hydrochar with additional useful applications in the future.
        6,300원
        546.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite its profound impact on athletic performance, the significance of heart rate recovery (HRR) has been insufficiently addressed in the filed of sports science, particularly in the context of weightlifting characterized by brief and intense exertions involving heavy weights. Serving as a valuable indicator of autonomic nervous system and cardiovascular function, HRR assumes a pivotal role in weightlifting. This comprehensive review aims to delineate the specific demands for HRR in weightlifting, shedding light on the often overlooked cardiovascular considerations within training regimes focused on strength and power. The investigation scrutinizes the repercussions of HRR on weightlifting performance, seeking to elucidate how inadequate recovery intervals may result in physiological and psychological consequences. These consequences encompass a distorted perception of effort, disruption of coordination, compromised posture due to irregular breathing, and an overall decline in lifting capacity. The review systematically presents compelling evidence pertaining to heart rate response and recovery patterns during weightlifting, underscoring the critical importance of well-structured rest periods. Furthermore, the review delves into a comprehensive discussion of factors influencing HRR in weightlifting, encompassing variables such as sex, age, cardiovascular function, hydration, nutrition, and psychological aspects. Finally, a key emphasis is placed on the integration of effective HRR techniques into the training regimens of weightlifters, thereby ensuring sustained and optimized performance outcomes.
        4,000원
        547.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        소형 선박(<499 GT)이 전체 선박의 46%를 지배하고 있어 상대적으로 많은 CO2 배출가스를 가지고 있다고 결론지을 수 있다. 최 적의 Trim 조건에서 운전하면 선박의 저항을 감소시킬 수 있어 온실가스가 적게 발생할 수 있다. Trim을 최적화하는 가장 저렴한 방법 중 하 나는 최적의 Longitudal Center of Gravity(LCG)를 얻기 위해 무게 분포를 조정하는 것이다. 따라서 본 연구에서는 소형 선박의 저항에 대한 LCG 변화의 영향을 경험적 및 수치적 해석을 통해 연구하고자 한다. 선체를 설계하는 Savitsky 경험식은 Maxsurf Resistance의 방법으로 사용 된다. 수치해석에는 STAR-CCM+ 상용 CFD(Computational Fluid Dynamics) 소프트웨어가 사용되지만 최종적으로 선박 설계 과정 이후 최적의 LCG를 얻기 위해 전체 저항을 비교한다. 결론적으로 Froude Number 0.56에서는 수치해석에 의해 전체 길이(LoA) 46.2%에서 최적의 LCG를 달성하고 Froude Number 0.63에서는 43.4% LoA를 달성하여 29.2% LoA에서 기준점에 비해 최대 41.12% - 45.16%의 상당한 저항 감소를 얻을 수 있다.
        4,000원
        548.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The root-lesion nematode Pratylenchus spp. is the most important plantparasitic nematode due to its worldwide distribution, wide host ranges, and migratory endoparasitic characteristics. One population of Pratylenchus collected from the giant pussy willow (Salix chaenomeloides Kimura) in the Andong area as part of a nematode survey in Korea was characterized morphologically and by molecular methods. The analysis of morphological measurements and morphometric characteristics, as well as DNA sequencing of the rRNA large subunit (LSU) D2/D3 expansion segments and the internal transcribed spacer (ITS) gene sequence, confirmed the identity of this population as P. hippeastri. This study is the first report of P. hippeastri associated with Salix chaenomeloides in Korea and worldwide. Further studies on distribution and pathogenicity in different P. hippeastri host crops, such as grapevines, strawberries, and apples, are necessary. The taxonomic keys to 16 Pratylenchus species in Korea are provided.
        4,000원
        549.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The morphological features of germling cells were examined to identify an unspecified resting cyst (described as Cochlodinium cf. polykrikoides-like resting cyst) in the Korean coastal area. LSU rRNA gene sequences were also obtained from a strain established from the germling cells. The resting cysts isolated from Korean coastal sediment were characterized as being brown in color, having a large dark-red body, and fibrous lobed ornaments. The germling cells were ellipsoidal with an irregular outline and had an open comma-shaped ASC (apical structure complex), a wide and deep cingulum, and a deep sulcus. These morphological features were consistent with those of previously described harmful dinoflagellate Pseudocochlodinium profundisulcus. The molecular phylogeny revealed that the germling cells and P. profundisulcus were conspecific. Based on these morphological and phylogenetic data, this study documents the occurrence of P. profundisulcus in a Korean coastal area for the first time.
        4,000원
        550.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
        4,000원
        551.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
        4,200원
        552.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Henricia specimens were collected using a dual approach of trimix scuba diving and fishing nets. This inclusive collection encompasses the discovery of two species highlighted in this study and introduces and provides comprehensive descriptions for Henricia kinkasana and Henricia longispina aleutica. The descriptions offered in this study were derived from the thorough examinations of external morphological characteristics. The documentation provides detailed insight into key traits related to the abactinal and actinal skeletons and spines of these newly recorded species in Korea. This comprehensive examination contributes to our understanding of the distinct morphological characteristics defining each species within the genus Henricia.
        4,000원
        553.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.
        4,900원
        554.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examined the impact of two bacterial strains, H05E-12 and H05R- 04, on alleviating non-irrigation-induced stress and its subsequent effects on the fruit productivity of sweet pumpkin plants. When subjected to non-irrigation-induced stress, the lipid peroxidation, proline, total phenol, and total soluble sugar content significantly decreased in plants treated with either H05E-12 or H05R-04 compared to the control. In a greenhouse experiment under non-irrigated conditions, H05E-12-treated plants exhibited higher stomatal conductance than the control, although there was no significant change in the soil plant analysis development (SPAD) value due to treatment. Upon re-watering, an increase in fruit diameter was observed in H05E-12-treated plants, and the L-ascorbic acid content in the fruit also showed a significant increase compared to the control. The H05E-12 strain was identified as Kushneria konosiri. To the best of our knowledge, this is the first report detailing the beneficial effects of K. konosiri on the alleviation of non-irrigation-induced stress and the promotion of plant growth in sweet pumpkin plants.
        4,200원
        555.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC’s guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE’s program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility’s current practices—periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure—were evaluated for their suitability in managing the silo system’s aging. Based on this review, several improvements were proposed.
        4,200원
        556.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.
        4,000원
        557.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.
        4,500원
        558.
        2023.12 KCI 등재 구독 인증기관·개인회원 무료
        1976년에 제정된 미국의 외국주권면제법은 외국정부의 주권적, 공법적 행위에 대해서는 미국법원은 원칙적으로 재판관할이 없음을 표명하면서, 예외적으로 그 외 국정부의 행위가 해당 주권면제법에서 규정하는 예외(exception)에 해당할 경우, 미국법원의 외국정부에 대한 재판관할을 인정한다. 특히“테러행위 예외(terrorism exception)”규정은 1996년에 외국주권면제법에 처음으로 추가되었으며, 외국 정부가 테러행위를 지원하여, 미국의 국무부로부터 “테러지원국”으로 지정된 국가의 경우, 해당 테러행위로 인해 신체적, 정신적 손해 를 입은 피해자들은 해당 테러지원국에 대해 민사상 책임을 묻는 민사소송을 미국 법원에서 제기할 수 있다. 본 논문에서는 외국주권면제법 상의 테러행위 예외 규정과 1996년 제정 이후 개 정된 내용을 살펴보고, 법원에서 관련 내용을 어떻게 적용했는지를 검토한다. 특히 테러행위 예외규정을 해당 규정이 제정 또는 개정되기 이전의 테러행위에도 소급 적으로 적용할 수 있는지? 피해자들에게 징벌적 손해배상도 부여할 수 있는지? 또 한 미국법원에서 테러지원국의 민사상 손해배상 판결을 획득한 피해자들이 테러지 원국의 재산을 압류 또는 집행할 때의 문제점 등을 거론한 판례도 살펴본다. 추가 적으로 북한에 대해 테러행위 예외를 적용하여, 북한의 재산을 압류, 집행한 오토 웜비어(Otto Warmbier) 관련 판결, 이란의 미국 내 재산압류에 대한 미국 판결 등을 분석한다.
        559.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS’s properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.
        4,000원
        560.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study describes Philodromus paiki sp. nov., which was previously misidentified as P. fuscomarginatus (De Geer, 1778), P. poecilus (Thorell, 1872), and P. spinitarsis Simon, 1895 in Korea, as a new species with diagnosis, detailed descriptions, and taxonomic photographs. Additionally, P. spinitarsis is also described to correct previous misidentifications of Korean records of the species.
        4,000원