검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.10 구독 인증기관·개인회원 무료
        Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. Success parasitism of the nematode-bacterial complex depends on the host immunosuppression by the bacteria via their secondary metabolites. Lrp (Leucine-responsive regulatory protein) is a global transcriptional factor of the bacteria and play a crucial role in the parasitism. However, its regulatory targets to suppress the insect immunity were not clearly determined. This study investigated the regulatory target genes and subsequent secondary metabolites by Lrp in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage in a target insect, Spodoptera exigua. Among eight non-ribosomal peptide synthetase (NRPS1-NRPS8) genes, six gene (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites along with alteration of the NRPS expression levels. The immunosuppressive activities of X. hominickii depended on the Lrp expression level. The metabolites produced by Lrp expression possessed the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (= cPF) was produced under Lrp control and identified to inhibit phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays crucial role in insect immunosuppression by modulating NRPS expressions.
        5.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the antimicrobial effect of polyphosphates as a food additive, the growth and structural change of Listeria monocytogenes Scott A were examined in relation to polyphosphates concentration and incubation temperature. Up to 10,000 ppm of polyphosphates, the growth rate of strain was gradually inhibited with increasing polyphosphates concentration and decreasing the incubation temperature. Minimal inhibitory concentration of polyphosphates to the growth of strain was about 12,000 ppm. It was observed, using both scanning electron microscopy(SEM) and transmission electron microscopy(TEM), that 0.9% polyphosphates treatment was resulted in the destruction of cell wall and outflow of cell ingredients. The antimicrobial effects of polyphosphates were more effective than those of dehydroacetate and potassium sorbate at 13℃ and 4℃. The growth rate of the strain in beef was significantly inhibited by the treatment of 0.9% polyphosphates and storaged at cooling temperature.
        4,000원
        6.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The antifungal effects of polyphosphates on the growth and T-2 toxin production of Fusarium sporotrichioides M-1-1 were investigated. The growth of the strain was significantly inhibited in the potatoes dextrose agar medium treated with 1.5% polyphosphates or more. When we checked T-2 toxin by the indirect competitive ELISA, the strain produced 11.25 ug/ml and 10.90 g/ml levels of T-2 toxin in rice and corn containing 50% moisture contents, respectively. However, T-2 toxin was little detected in rice medium and corn medium with 1.5% polyphosphates addition for short(14 days) and prolonged incubation time(45 days). We also observed the destruction of cell wall and outflow of cell ingredients with 1% polyphosphates treatment to the strain. Therefore, moisture and polyphosphates greatly effected on the growth and T-2 toxin production of the strain.
        4,000원