검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8,333

        1121.
        2022.05 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembly, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyroprocessing. An important goal of the head-end process is the fabrication of a proper feed material for the subsequent electrolytic reduction process. In the vol-oxidation process, the pellet type-SFs are pulverized by an oxidation under an air-blowing condition, and some volatile fission products are removed from the produced powders by using an air flow. After blending, the U3O8 powders are moved to a compactor of compaction process to obtain U3O8 porous pellets. In the fine powders removal system connected with compactor, for the improved performance of oxide reduction process coupled to dry head-end process, the removal/recovery system for fine powders potentially attached to the surface of oxide reduction raw material was developed and applied to the removal of fine powders from green pellets fabricated in dry head-end process. The removal efficiency of fine powders was also verified using porous U3O8 pellets in the fine powders removal system.
        1122.
        2022.05 구독 인증기관·개인회원 무료
        For economic and safe management of Spent Nuclear Fuel (SNF), it is very important to maintain the structural integrity of SNF and to keep the fuel undamaged and handleable. The cladding surrounding nuclear fuel must be protected from physical and mechanical deterioration. The structural evaluation of SNF is very complicated and numerically demanding and it is essential to develop a simplified model for the fuel rod. In this study, a simplified model was developed using a new cladding failure criterion. The simplified model was developed considering only the horizontal or lateral static load utilizing the cladding material properties of irradiated Zirclaoy-4, and applicability in horizontal and vertical drop impacts was investigated. When a fuel rod is subject to bending, a very complicated 3D stress state is generated within the vicinity of the pellet–pellet interface. A very localized stress concentration is observed in the area where the edges of the pellets contact the cladding. If the failure strain criteria obtained from the uniaxial tension test or biaxial tube test is applied, failure is predicted at the beginning stage of loading with premature through-thickness stress or strain development. The localized contact stress or strain is self-limiting and is not a good candidate for the cladding failure criteria. In this work, a new cladding failure criterion is proposed, which can account for the localized stress concentration and the through-thickness stress development. The failure of the cladding is determined by the membrane plus bending stress generated through the thickness of the cladding, which can be calculated by a process called stress linearization along the stress classification line. The failure criterion for SNF was selected as the membrane plus bending stress through stress linearization in the cross-sections through the thickness of the cladding. Because the stress concentration in the cladding around the vicinity of the pellet–pellet interface cannot be simulated in a simplified beam model, a stress correction factor is derived through a comparison of the simplified model and detailed model. The applicability of the developed simplified model is checked through horizontal and vertical drop impact simulations. It is shown that the stress correction factor derived considering static bending loading can be effectively applied to the dynamic impact analyses in both horizontal and vertical orientations.
        1123.
        2022.05 구독 인증기관·개인회원 무료
        In this study, for thermal neutron absorption, an aluminum metal composite in which B4C particles were uniformly dispersed was prepared using stirring casting and hot rolling processes. The microstructure, thermal neutron absorption rate, mechanical properties and dispersibility of the reinforcement of the prepared B4C/Al composite were analyzed. The composite in which the 40 μm sized B4C particles were uniformly dispersed increased the tensile strength as the volume ratio of the reinforcement increased.
        1124.
        2022.05 구독 인증기관·개인회원 무료
        An accumulation of spent nuclear fuel (SNF) has brought a considerable interest due to its energy and environmental issue. To effectively manage SNF, a pyroprocessing is introduced to separate useful resources from the spent fuels and to manufacture suitable fuels. In head-end process of pyroprocessing, spent fuels are thermally treated to prepare UO2 pellets, where various radioactive gases from SNFs are released during thermal treatment. Within these gases, C-14 as CO2 form is a radioactive fission product which had a long half-life of 5,730 years and emits beta radiation of 0.156 MeV. Generally, current CO2 capturing technologies include adsorption by solid materials, absorption by aqueous solutions, and membrane separation. Among these methods, absorption is an effective approach which traps CO2 effectively and and it is easy to operate at room temperature. In addition, it is highly recommended as immobilizing 14CO2 as CaCO3 formation due to the high thermal and chemical stability, and the relatively low solubility in water. Generally, a double alkali method has been proposed to capture low concentrated 14CO2 from the stream. This method for CO2 capture includes absorption process with NaOH solution and causticization using Ca(OH)2. In this study, CO2 emitted from SNF is captured using double alkali method, and the effects of operating conditions on capturing efficiency were investigated. Furthermore, considering the two-film theory, the effects of trapping conditions on the CO2 absorption performance were examined. The recovered CaCO3 from causticization was collected from the absorbing solution and analyzed.
        1125.
        2022.05 구독 인증기관·개인회원 무료
        Molten salt immersion technique has been tested with several Sr oxides, SrZrO3, SrMoO4 and U2SrOy, and MgCl2 based molten salts for the Sr nuclide separation. Reaction time, temperature, and salt composition were varied to effectively separate Sr in chloride forms. ICP-OES, XRD, and SEM analysis were conducted for the conversion efficiency and structure and morphology analysis. It is confirmed that all experiments of SrZrO3 with MgCl2 at 800°C for reaction time 5, 10, 20 hours showed higher conversion efficiency than 99% and in LiCl-KCl-MgCl2 and NaCl-MgCl2 molten salts at 500°C or 600°C, conversion efficiency higher than 97% was obtained. SrMoO4 in MgCl2 immersion experiments for 10 hours showed higher conversion efficiency than 99% when the molar ratio of salt/oxide powder is 7. U2SrOy was also tested with MgCl2 molten salt at 800°C and higher efficiency than 99% and mainly MgUO4 were produced as a reaction product.
        1126.
        2022.05 구독 인증기관·개인회원 무료
        Facing the problem of saturation of spent nuclear fuel (SNF) stored in temporary storage facilities on sites, interest in the treatment of SNF is increasing, and it is recognized as a task that needs to be solved promptly. Although direct disposal is a general method for dealing with SNF, the entire fuel assembly is classified as high-level waste; thus, the burden of disposal is high. In order to minimize the disposal burden with enhancing safety for long term storage, it is necessary to develop SNF treatment technologies and continuous efforts are required from a national policy perspective. The present study focused on minimizing the volume of high level waste from light water reactor fuel by separation of uranium, which accounts for most of SNF. The chlorination characteristics of uranium (U), rare earth (RE) oxides were confirmed through lab-scale experiments, and the possibility of uranium separation from U-RE simulated fuel was evaluated using NH4Cl chlorinating agent. The detailed results will be posted and discussed.
        1127.
        2022.05 구독 인증기관·개인회원 무료
        Prior to the investigations on fuel degradation it is necessary to describe the reference characteristics of the spent fuel. It establishes the initial condition of the reference fuel bundle at the start of dry storage. In a few technology areas, CANDU fuels have not yet developed comprehensive analysis tools anywhere near the levels in the LWR industry. This requires significantly improved computer codes for CANDU fuel design. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, clad stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking, delayed hydride cracking, and sheath splitting due to UO2 oxidation for a defective fuel. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. The second step was an examination of the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the in-house code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.
        1128.
        2022.05 구독 인증기관·개인회원 무료
        To estimate the removal efficiency of TRU and rare earth elements in an oxide spent fuel, basic dissolution experiments were performed for the reaction of rare earth elements from the prepared simfuel with chlorination reagents in LiCl-KCl molten salt. Based on the literature survey, NH4Cl, UCl3, and ZrCl4 were selected as chlorination reagent. CeO2 and Gd2O3 powders were mixed with uranium oxide as a representative material of rare earth elements. Simfuel pellets were prepared through molding and sintering processes, and mechanically pulverized to a powder form. The experiments for the reaction of the simfuel powder and chlorination reagents were carried out in a LiCl-KCl molten salt at 500°C. To observe the dissolution behavior of rare earth elements, molten salt samples were collected before and after the reactions, and concentration analysis was performed using ICP. After the reaction completed, the remaining oxide was washed with water and separated from the molten salt, and XRD was used for structural analysis. As a result of salt concentration analysis, the dissolution performance of rare earth elements was confirmed in the reaction experiments of all chlorination reagents. In an experiment using NH4Cl and ZrCl4, the uranium concentration in the molten salt was also measured. In other words, it seemed that not only rare elements but also uranium oxide, which is a main component of simfuel, was dissolved. Therefore, it is thought that the dissolution of rare earth elements is also possible due to the collapse of the uranium oxide structure of the solid powder and the reaction with the oxide of rare earth elements exposed to molten salt. As a result of analyzing the concentration changes of Simfuel before and after each reaction, there was little loss of uranium and rare earth elements (Ce/Gd) in the NH4Cl experiment, but a significant amount of rare earth elements were found to be reduced in the UCl3 experiment, and a large amount of rare earth elements were reduced in the ZrCl4 reaction.
        1129.
        2022.05 구독 인증기관·개인회원 무료
        Strontium-90 is a high heat-generating nuclide in spent nuclear fuel. The removal of the nuclide separation is indispensable to reduce the burden of storage and disposal of high-level radioactive waste. Korea Atomic Energy Research Institute has developed the molten salt immersion technique to separate the strontium by the chlorination of the strontium oxide in molten salt. It is needed to separate the salt for the recovery of strontium from the salt solution after the chlorination reaction. In this study, it was investigated on the recovery of the strontium from the salt. Vacuum distillation was used for the separation of strontium from the molten salt. The vapor pressures of the candidate salts were calculated by HSC chemistry and the apparent evaporation rates (AER) were measured at 830°C to evaluate the salts for strontium recovery. The candidate salts were LiCl, KCl, MgCl2, NaCl and CaCl2. The AERs of MgCl2 and NaCl were 1.9 and 1.3 g/cm2-h, respectively. Those two salts can be separated from the strontium compound even though the AER values are much lower than those of LiCl-KCl (~ 8 g/cm2-h). CaCl2 salt was rarely evaporated (AER < 0.03 g/cm2-h) and it is not suitable to use as a strontium recovery salt. Therefore, MgCl2, NaCl, LiCl and KCl can be regarded as candidates for a strontium recovery salt.
        1130.
        2022.05 구독 인증기관·개인회원 무료
        The evaluation of the damage ratio of spent nuclear fuel is a very important intermediate variable for dry storage risk assessment, which requires an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can leaded to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, the failure resistance of Zircaloy-4 cladding against the pinch load is investigated using numerical simulations assuming the existence of radial hydrides. The simulation model is based on the microscopic images of cladding. A pixel-based finite element model was created by separating the Zircaloy-4 and hydride using the image segmentation method. The image segmentation method uses a morphology operation basis, which is a preprocessing method through erosion operation after image expansion to enable normal segmentation by emphasizing pixels corresponding to hydrides. The segmented images are converted into a finite element model by assigning node and element numbers together with corresponding material properties. Using the generated hydride cladding finite element model, several numerical methods are investigated to simulate crack propagation and cladding failure under pinch load. Using extended finite element (XFEM) models the initiation and propagation of a discrete crack along an arbitrary, solution-dependent path can be simulated without the requirement of remeshing. The applicability of fracture mechanical parameters such as stress intensity, J-integral was also investigated.
        1131.
        2022.05 구독 인증기관·개인회원 무료
        In accordance with the Enforcement Decree of the Act on Physical Protection and Radiological Emergency, operators of Nuclear Power Plants (NPP)s must conduct full cyber security exercise once a year and partial exercise at least once every half year. Nuclear operators need to conduct exercise on systems with high attack attractiveness in order to respond to the unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities. Nuclear facilities identify digital assets that perform SSEP (Safety, Security, and Emergency Preparedness) functions as CDA (Critical Digital Assets), and nuclear operators select exercise target systems from the CDA list and perform the exercise. However, digital assets that have an indirect impact (providing access, support, and protection) from cyber attacks are also identified as CDAs, and these CDAs are relatively less attractive to attack. Therefore, guidelines are needed to select the exercise target system in the case of unauthorized removal of nuclear or other radioactive material and sabotage response exercise. In the case of unauthorized removal of nuclear or other radioactive material, these situations cannot occur with cyber attacks and external factors such as terrorists must be taken into consideration. Therefore, it is necessary to identify the list of CDAs that terrorists can use for cyber attacks among CDAs located in the path of stealing and transporting nuclear material and conduct intensive exercise on these CDAs. A typical example is a security system that can delay detection when terrorists attack facilities. In the case of sabotage exercise, a safety-related system that causes an initiating event by a cyber attack or failure to mitigate an accident in a DBA (Design Basis Accident) situation should be selected as an exercise target. It is difficult for sabotage to occur through a single cyber attack because a nuclear facility has several safety concepts such as redundancy, diversity. Therefore, it can be considered to select an exercise target system under the premise of not only a cyber attack but also a physical attack. In the case of NPPs, it is assumed that LOOP (Loss of Offsite Power) has occurred, and CDA relationships to accident mitigation can be selected as an exercise target. Through exercise on the CDA, which is more associated with unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities, it is expected to review the continuity plan and check systematic response capabilities in emergencies caused by cyber attacks.
        1132.
        2022.05 구독 인증기관·개인회원 무료
        The cyber-attack on Natanz nuclear facility in Iran which called Stuxnet showed how cyber could affect the physical system. If cyber-attack on NPPs compromise digital I&C system, it may occur some malfunction on actuators and at worst, radioactive material released into the environment. However, it is hard to test the cyber security on operating NPPs because of the safety problems. So, it is necessary to develop a test-bed to test both the cyber security of NPPs and the effect of cyber-attack on NPPs. KINAC has been developing NPPs test-bed to evaluate the cyber security of NPPs, validate cyber security controls of licensee and train the inspectors. In this paper, the conceptual design of NPPs cyber security test-bed will be discussed. Actual I&C systems such as PLC (Programmable Logic Controller) and DCS (Distributed Control System) are essential for testing cyber security. Also, NPPs simulator is one of important part to evaluate or analyze the effect of cyber-attack on NPPs. Usually, NPPs simulator consists of software which contains nuclear model, thermal-hydraulic model, execution program and GUI and hardware which contains workstation, operator console, PC and large display panel. It provides very similar to actual NPPs to users. However, in case of conventional NPPs simulator, I&C part is implemented as a software, so it is impossible to test the cyber security. To solve this issue, in case of the NPPs cyber security test-bed, I&C part should be hardware and simulation code should be modified to connect the hardware I&C part and software simulator using the HIL (Hardware-in-the-loop) method. The main purpose of this NPPs cyber security test-bed is to utilize in NPPs cyber security regulation. So, KINAC is developing the test-bed with APR 1400 simulator model and KNICS PLC and DCS platform. These real hardware I&C system will be connected to hacker’s PC to test cyber security of NPPs. Also, the data set will be updated with real NPPs data set after the test-bed development finished. Furthermore, to give various analysis environment, archiving equipment that archive major plant process data, network packet between I&C systems and the like will be added. This NPPs cyber security test-bed combined the good points of conventional NPPs simulator and cyber security test-bed. It can test the cyber security of NPPs that conventional NPPs simulator cannot do. Also, it can evaluate and analyze the impact of cyber-attack on NPPs that cyber security test-bed cannot do.
        1133.
        2022.05 구독 인증기관·개인회원 무료
        Efforts for nuclear non-proliferation have continued since the development of nuclear weapons and the conclusion of the NPT Treaty. Nuclear proliferation requires materials, facilities, and human resources to make nuclear weapons, and it takes a medium to long-term time. There are many restrictions in the current system to obtain nuclear materials and facilities, so it is often done through illegal means, black markets, or confidential transactions. Methods have been developed to evaluate the nuclear non-proliferation regime to strengthen the non-proliferation and solve the problems. The IAEA and the United States DOE initiated the proliferation resistance evaluation in 1980. The DOE conducted the assessment in three main evaluation categories: materials, technical characteristics of facilities, and institutional barriers. In another nuclear non-proliferation evaluation study, some researchers evaluated three main types: current capacity, political situation, and international situation. Detailed indicators include economic capacity, industrial capacity, nuclear capacity, leader’s intentions, political structure, competitive relations, alliances, and international norms. Most of these evaluations are based on the situation at the time of assessment at the national level. Historical examples of nuclear proliferation are rare, and verification is also challenging. The Bayesian probability is widely used when the data is small, experiments are impossible, and the causal relationship is unclear. A Bayesian network is a combination of Bayesian probability and graphics. It is used throughout the industry because it can easily derive results according to causal relationships and weights of various variables, evaluate the risk for decision-making, and obtain changed results through data updates. In particular, to evaluate the proliferation of nuclear weapons, Freeman developed the Freeman network in 2008 and the Freeman-Mella network in 2014. Freeman explained in detail only the process of deriving variables, correlations, and probabilities of factors related to factors such as motivation, intention, and resources. It isn’t easy to view as an objective result value because it does not describe the academic background for path selection, motivation list, intention, and resource variable selection. However, the research was meaningful because he first used the Bayesian network for nuclear proliferation. Although some studies have been done at the macro level, there is no case of applying it in export controls, which is the beginning of the actual spread. Also, there is no quantitative value for factors for risk assessment. There is little data, and verification of causality is difficult, so if the Bayesian network is applied to export control and applied to actual implementation, it will help make decisions such as export license or export denial.
        1134.
        2022.05 구독 인증기관·개인회원 무료
        After the annexation of Crimea in 2014, Russia continued to deploy military forces and equipment near the Ukrainian border in March and October of 2021, heightening the international crisis. On February 24, 2022, Russia began its full-scale invasion of Kyiv, the capital of Ukraine, with missiles and ground forces. Russia’s invasion of Ukraine was accompanied by an urgent speech by Russian President Vladimir Putin on the day he would conduct a special military operation in Ukraine. Putin warned that Russia would seek to demilitarize Ukraine and retaliate immediately if foreign interference occurred. In particular, he stated that the expansion of the North Atlantic Treaty Organization and exploitation of Ukrainian territory was unacceptable. Due to the current Russian invasion of Ukraine, the United States has updated export controls and sanctions as of March 15. Extensive US export controls and sanctions recently imposed on some areas of Russia, Belarus, and Ukraine have included industries such as defense, aerospace, energy, and finance. Executive Order EO14065 is issued to ban transactions with specific individuals and entities, including financial institutions. Additionally, Executive Order EO14066 has banned US imports of Russian oil, natural gas, and coal and new investments in the Russian energy sector. The EAR was revised to strengthen export controls on Russia and Belarus. The sanctions imposed include 48 major defense companies, 328 personnel, and the CEO of Sberbank, which produced weapons used in the attack on Ukraine. Companies are listed on the Sectoral Sanctions Identification (SSI) List, and individuals are listed on the Specially Designated Nationals (SDN) List. Sanctions such as asset freezing and a ban on all financial transactions with Americans apply. In line with the international trend, Korea also declared its participation in sanctions against Russia. As of March 25, 2022, export controls have been strengthened by newly established items subject to catchall licenses related to Russia and Belarus. Ministry of Trade, Industry, and Energy (MOTIE) added Fifty-seven items to Annex 2-2 in the Notification of Export and Import of Strategic Items. Most of these sanctions are for dual-use items under the jurisdiction of MOTIE. However, as countries, organizations, and individuals who may be subject to catch-all licenses are included in the sanctions list, Nuclear Safety and Security Commission should also review catch-all licenses for Trigger List Items. These sanctions are expected to last for some time. Even though China and Russia are the Nuclear Weapon States, the US has strengthened export controls. This is likely due to the opacity of China and Russia’s export controls system and the lack of active implementation of UN Security Council sanctions. However, there is an aspect of protecting their technology. It seems that Korea should also pay attention to these changes in international trends and keep pace with the level of control in other countries.
        1135.
        2022.05 구독 인증기관·개인회원 무료
        This paper presents a strategic adoption model for blockchain technology in nuclear nonproliferation by analysing the implementation of legally binding agreements and leveraging results from governmentleading sectors. Blockchain has been emerging as not only a single promising technology but a foundational one which can be combined with diverse sectors. From the national point of view, it is imperative that the government formulates policy for fostering blockchain-related industries, thereby, gaining a competitive advantage at the national level. Accordingly, the Korean government has established the Blockchain Technology Development and Diffusion Strategies in 2018 and 2020, respectively, to verify the technology by supporting pilot projects for apposite industries, such as customs clearance, transhipment of containers, record-keeping of meat processing, and smart contracts. In addition, the strategies announce to support liaison with regulatory sandbox and cooperation between the projects. Internationally, on the other hand, nuclear nonproliferation imposes the duties of verifying that member states under the NPT and the Safeguards Agreement obey the IAEA mandate, “Atoms for Peace and Development”. Similarly, bilateral nuclear cooperation agreements and administrative arrangements specify reporting obligations for the origin and history records of the Trigger List items. Meanwhile, commercial and industrial secrets and other confidential information of any entities involved have to be securely protected. Provided accompanying activities accomplish the integrity of records and mutual transparency, it brings more credibility, and further, the competitiveness of the state’s nuclear industry. In conclusion, the tasks that the Republic of Korea implements as an exemplary country complying with the nuclear nonproliferation regime have many similarities with the pilot projects that have been or are being carried out under national strategies for fostering blockchain technology elsewhere. This implies that the leveraging of the subsets can derive a new competitive model in blockchain adoption that contributes to the competitiveness of the national nuclear industry due to the advanced nuclear regulations.
        1136.
        2022.05 구독 인증기관·개인회원 무료
        For the peaceful use of nuclear energy, the international community has devoted itself to fulfilling its obligations under the Safeguards Agreement with IAEA. In this regard, uranium in a radioactive waste drum should be analyzed and reported in terms of mass and 235U enrichment. In order to characterize radioactive wastes, gamma spectroscopy techniques can be effectively applied. In the case of high-resolution gamma spectroscopy, because an HPGe detector can provide excellent energy resolution, it can be applied to analyze a mixture having a complicated isotopic composition. However, other substances such as wood, concrete, and ash are mixed in radioactive waste with various form factors; hence, the efficiency calibration is difficult. On the other hand, In Situ Object Counting System (ISOCS) has a capability of efficiency calibration without standard materials, making it possible to analyze complex radioactive wastes. In this study, the analysis procedure with the ISOCS was optimized for quantification of radioactive waste. To this end, a standard radioactive waste drum at KEPCO NF and low-level radioactive waste drums at Korea Radioactive Waste Agency (KORAD) were measured. The performance of the ISOCS was then evaluated by Monte Carlo simulations, Multi-Group Analysis for Uranium (MGAU) code, and destructive analysis. As a result, the ISOCS showed good performance in the quantification of uranium for a drum with the homogenized simple geometry and long measurement time. It is confirmed that the ISOCS gamma spectroscopy technique could be used for control and accountancy of nuclear materials contained in a radioactive waste drum.
        1137.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The War on Terror launched by the US against Islamic terrorist groups persisted through the Bush-Obama-Trump administrations for nearly 20 years before President Biden completely withdrew the US forces from Afghanistan by the end of August 2021. These military interventions are noticeable examples of American unilateralism in the Middle East. The War on Terror has been severely criticized by the global community as military actions without just cause and lacking grounds under international law. This research aims to critically evaluate the War on Terror in terms of legal and political theories of war now that twenty years of American unilateralism in the Middle East is over. In this article, the author examines other underlying reasons for, and the outcomes of, the war against terrorist groups. He will also suggest peaceful means to fundamentally resolve the Middle East conflict with a view to preventing war in other world regions.
        5,800원
        1138.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 글은 예이츠와 엘리엇에 대한 연구로서 이 두 시인 각각의 시적 화 자에 대한 표현 방법을 살펴 본 것이다. 예이츠의 경우, 비교적 시적 화자가 곧 예이 츠 자신과 일치하는 경향을 보이고 있는데 그는 주로 상징에 의하여 시적화자의 의도 를 드러내고 있다. 반면에 엘리엇은 작품창작과정에서 그 자신을 드러내지 않기 위해 서 시적 화자를 다른 인물들로 설정하는 경향을 보인다. 그러나 두 시인에게 공통점은 시적 화자를 드러내거나 감추고 있지만 객관성을 추구한다는 점에 있어서는 서로 유 사하다고 볼 수 있다.
        4,800원
        1139.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was undertaken to compare meal skipping, snacking, and weight perceptions between students on-campus living alone and off-campus living with parents, in an urban college in the United States. The self-report survey was completed by 219 college students (on-campus=100, off-campus=119) between April and May 2012. Two-thirds (67%) of the respondents skipped at least one meal in the past week, and most participants showed strong desires to lose weight despite their normal/under-weight status. Significant differences between the two groups were obtained for the reason to skip a meal and the type of snack consumed. Compared to on-campus students, significantly higher values were obtained for off-campus students for choosing ‘no time to prepare’ as a meal skipping reason for lunch and dinner, and ‘sweets’ as a preferred snack. In addition to the group comparison, multiple regression results indicate that the body mass index (BMI) positively correlates with meal skipping and snacking frequencies. Younger students and female students were determined to have a higher frequency of meal skipping and morning snacking. Future research is required to study the dietary factors associated with living arrangements, to help college students develop healthy eating habits.
        4,000원
        1140.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.
        4,000원