원형질체 융합에 의한 화합성 및 불화합성 종간 체세포잡종을 얻었다. 화합성 종간인 Pleurotus ostreatus 와 P. florida 의 융합체는 이질핵체 (heterokaryon) 를 형성하였고, 불화합성 종간인 P. cornucopiae + P. florida , P. ostreatus + Ganoderma applanatum, P. florida + Ganoderma lucidum, 그리고 P. ostreatus + Flammulina velutipes 는 합핵체(synkaryon) 를 형성하였다. 이질이핵체는 동일한 양상의 자실체를 형성하는데 비해 합핵체는 유사분열상의 꺽쇠연결체 형성, 한쪽 친과 유사한 자실체 형성, 비정상적 유전형질 분리 및 유전자재조합 현상을 나타내었다. 화합성 및 불화합성 계통간 융합체의 RAPD 분석결과 화합성 종간 융합체는 동일한 DNA 패턴을 나타내었고, 불화합성 종간 융합체는 한쪽 친과 유사한 DNA 양상이면서 비양친 DNA 밴드도 형성하였다. 합핵체의 패턴은 microgenome insertion type 과 macrogenome insertion type 으로 구분되었다. 합핵체의 자실체 발생은 융합 모균주 양친의 자가임성에 의존하는데 이는 느타리의 동형핵체 자가임성과 유사한 양상이었고, 교배형 전환과 관련이 있는 것으로 사료된다. 여기서는 이러한 관점에서 논할 것이다.
Carbon molecular sieve (CMS) membranes were prepared by pyrolysis of polyimides having carboxylic acid groups and applied to the hydrogen separation. The polymeric membranes having carboxylic acid groups showed different steric properties as compared with polymeric membranes having other side groups (-CH3 and -CF3) because of the hydrogen bond between the carboxylic acid groups. However, the microporous CMS membranes were significantly affected by the decomposable side groups evidenced from the wide angle X-rat diffraction, nitrogen adsorption isotherms, and single gas permeation measurement. Furthermore, the gas separation properties of the CMS membranes were essentially affected by the pyrolysis temperature. As a result, the CMS membranes Prepared by Pyrolysis of polyimide containing carboxylic acid froups at 700℃ showed the H2 permeability of 3,809 Baller [1×10-10 H cm(STP)cm/cm2.s.cmHg], H2/N2, selectivity of 46 and H2/CH4 selectivity of 130 while the CMS membranes derived from polyimide showed the H2 permeability of 3,272 Barrer, H2/N2 selectivity of 136 and H2/CH4 selectivity of 177.
The rapid growth of the food packaging field is powered by the ever growing health conscious consumers and demand for fresher and higher quality foods. Active packaging technologies provide solutions for extending products shelf life with specially altered packaging systems. Among the several shelf life enhancer systems, active packaging system for preventing oxidation is discussed in this paper. Oxidation is generally regarded as the main factor in the development of rancidity of fats and oils. The oxidative processes result in the food becoming unacceptable for consumers. Such oxidation is inhibited by exclusion of oxygen and by the presence of antioxidants. First of all, oxygen scavengers made up of substances which chemically or enzymically react with oxygen were developed to remove oxygen. The commercial oxygen scavengers such as “ageless sachet”, “platinum catalyst”, and “glucose/oxidase enzyme” have been greatly discussed in their action mechanisms and applications. The use of antioxidants in packaging manufacture has so far been limited to stabilizing the polymer during the processing or retarding the change of polymer's physical properties during storage when UV irradiated. However, a further benefit derived from incorporation of an antioxidant into the polymer is more interesting for its ability to retard lipid oxidation of the packaged food via slow migration of an antioxidant from the polymer to food. In view of which, in this paper we will review some oxygen scavenger systems as well as antioxidant-impregnated or antioxidant-coated polymer packaging material.
The biosensor technology, which makes it possible to detect biomaterial such as protein, pathogen, and small molecules, is useful in such areas as diagnosis, bioprocessing, and food analysis or safety. For the development of a highly sensitive biosensor, immobilization techniques of organic/bio films on solid substrate, and detection methods of protein-protein reactions appearing in a few nanometers region from the sensor surface should be established. In this review, several immobilization techniques and detection methods are reviewed based on the articles reported recently.
Polyvinylpyrrolidone을 포함하는 폴리이미드 전구체의 열분해 공정을 통해 탄소분자체막을 제조하였으며 열분해성 고분자를 포함하는 전구체를 통해 제조된 막의 구조 및 기체 투과 특성에 대해 연구 하였다. 열분해성 고분자를 포함하는 전구체의 열적 특성을 조사한 결과 열적으로 안정한 폴리이미드의 경우 550℃에서 분해되는 것을 확인할 수 있었으며 열분해성 고분자의 경우 400℃에서 분해가 시작되는 것을 TCA를 통해 확인하였다 제조된 탄소분자체막의 기체 투과 특성을 조사한 결과 최종 열분해 온도가 증가됨에 따라 기체 투과도는 감소하였으며 열분해성 고분자를 포함한 전구체로부터 제조된 탄소분자체막의 경우 기체 투과가 향상됨을 알 수 있었다. 열분해성 고분자를 함유하는 전구체로부터 550℃에서 열분해를 통해 제조된 탄소분자체막의 경우 O2 투과도 808 Barrer [10-10cm3 (STP)cm/cm2scmHg]과 O2/N2선택도 7을 나타내었다.
The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. subject gazed the monochrome or the unique color, which was tailed target rotor. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling for the target color presented, the estimation of the unique color was cai\ulcornerlied out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law, The color difference saturated In the increase of area of background with the ratio more than 2:1.
We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.