본 연구는 한반도 유사 사례 중 하나인 1976년 판문점 도끼 사건에 대 한 한미일 3국의 관점을 역사적인 측면에서 관련 문서를 통해 고찰하였 다. 한국 정부와 국회는 북한과 공산주의에 관한 강렬한 적대감을 나타내 었다. 미국 백악관도 북한의 전적인 책임을 강조하며 북한을 비난하였다. 미국 의회는 판문점 도끼 사건을 규탄하였지만, 동시에 한국의 국내 인권 문제에 대해서도 논하였다. 이에 박정희 정권은 미국 의회의 대응이 매우 모호하다고 판단하여 불편함을 나타내며 미국 국무부에 도움을 요청하였 다. 한편, 일본 정부와 자민당은 판문점 도끼 사건에 대한 미국의 초기 대응에 공감하였다. 그러나 일본 국회에서 다른 정당은 한반도 유사시 미 국의 동맹인 일본이 개입하게 될 가능성을 매우 우려하였다. 본 연구는 한반도 유사 사례 중 하나인 1976년 판문점 도끼 사건이 발생하였던 당 시 한미일 3국의 시각이 모두 협력적이지는 않았음을 강조한다.
이 연구는 한국, 베트남, 인도의 궤적을 비교 분석하여 우즈베키스탄 전자 산업의 기술 축적 전략을 수립한다. 한국의 국가 주도 모델, 베트남 의 FDI 주도 조립 성장, 인도의 하이브리드 전략에 초점을 맞춘 이 연구 는 우즈베키스탄에 이전 가능한 교훈을 파악한다. 혼합 방법 접근 방식 (정책 분석 및 국가 간 사례 연구)을 채택한다. 이 연구는 이러한 모델이 FDI 제한, 저가치 수출, 인력 기술 격차와 같은 과제를 어떻게 해결하는 지 살펴본다. 주요 연구 결과에 따르면 한국의 성공은 장기적인 국가-산 업 협력과 STEM 교육 개혁에 달려 있었고, 베트남은 FDI 친화적 정책 을 우선시했지만 저가치 조립에 국한되어 있다. 인도의 PLI 제도는 보조 금이 국내 R&D를 육성하는 동시에 글로벌 제조업체를 유치할 수 있는 방법을 보여준다. STEM 커리큘럼을 산업 요구 사항(예: 한국 기업과의 파트너십)에 맞추고 지역 무역 협정을 강화함으로써 우즈베키스탄은 자 원 의존에서 중앙아시아 전자 허브로 전환할 수 있다. 이 연구는 정책 입안자에게 기술적 도약과 글로벌 경쟁력을 가속화하기 위한 체계적이고 맥락에 맞는 프레임워크를 제공한다.
To further increase the mechanical properties of polyacrylonitrile-based carbon fibers, a multiple stretching technique was applied. Carbon fibers were multiple stretched at 2200 °C and characterizations such as SEM, Raman, XRD, and TEM were used to investigate the evolution of microstructure of carbon fibers. It was found that the grooves on the surface of carbon fibers along the fiber axis direction became more obvious and the cross-section of fibers were twisted from nearly circular to elliptical after multiple stretching. Growth and slippage of graphite microcrystals along the fiber axis direction resulted decrease in disordered structure and defects in the carbon fibers and increase in the degree of graphitization. The multiple stretching effectively enhanced the length-to-width ratio of microcrystals. An increase of 75 GPa in tensile modulus and a retention rate of 0.95 in tensile strength were realized for carbon fibers multiple stretched at 2200 °C.
The accurate detection of vital biomarkers such as Ascorbic Acid (AA), Uric Acid (UA) and Nitrite ( NO2 −) is crucial for human health surveillance. However, existing methods often struggle with concurrent detection and quantification of multiple species, highlighting the need for a more effective solution. To address this challenge, this study aimed to develop a multifunctional electrochemical sensor capable of parallel detection of AA, UA and NO2 − using a synergistic combination of Graphene Oxide (GO) and Cadmium Sulfide (CdS) materials. Notably, the fabricated CdS@GO/Glassy Carbon Electrode (GCE) exhibited exceptional electrochemical activity, as evidenced by Differential Pulse Voltammetry (DPV) analysis. The sensor demonstrated remarkable sensitivity (8.13, 10.12, and 9.05 μA·μM−1·cm−2) and ultra-low detection limits (0.034, 0.062, and 0.084 μM) for AA, UA and NO2 −, respectively. Furthermore, it successfully identified single molecules of each analyte in aqueous and biologic fluid samples, with recovery values comparable to those obtained using High-Performance Liquid Chromatography (HPLC) standard addition methods. The significance of this study lies in developing a novel CdS@ GO/GCE sensor that enables concurrent detection and quantification of multiple vital biomarkers, offering a promising tool for human health monitoring and diagnosis.
Aqueous zinc–iodine batteries (AZIBs) are gaining attention for their ability to store and convert electrical energy. Nevertheless, their performance is hindered by the continual migration of polyiodides towards the zinc anodes, leading to undesirable side reactions, diminished coulombic efficiency, and compromised cycling stability. Traditional carbon materials have proven inadequate in resolving these challenges, mainly due to their limited iodine capacity and weak binding forces. Herein, we explore the use of porous carbon nanosheets (PCNSs) synthesized via the “Pharaoh’s Serpent” reaction as cathode electrodes in AZIBs without pre-load iodine. The PCNSs, characterized by their nanosheet structure and expansive specific surface area, not only facilitate a shorter diffusion path for rapid electrolyte infiltration but also provide numerous sites for ion adsorption and capacitive storage, markedly improving the efficacy of electrochemical reactions and ion migration rates. Utilizing the synthesized PCNSs as the cathode electrode in AZIBs, a specific capacity of 296 mAh g− 1 was achieved at 0.3 A g− 1. Even when the current density increased to 30 A g− 1, a specific capacity of 144 mAh g− 1 was still attained, with a capacity retention ratio of up to 48.6%, which is competitive with that of supercapacitors. In addition, the AZIBs demonstrated impressive cycling stability, retaining 103% of their capacity after 10,000 cycles, and a notable energy density of 266.4 Wh kg− 1 based on the cathode material. These findings significantly broaden the application of carbon materials in AZIBs research, emphasizing their potential in advancing AZIB technology.
Toxic gas emissions are a critical global health concern, responsible for numerous deaths each year. These hazardous gases can cause severe physiological reactions and even death upon exposure. To address this issue, we propose a graphene-Kaptonbased flexible biosensor for non-invasive toxic gas detection. The sensor is designed to accurately detect and identify several harmful gases, including carbon monoxide (CO), fluorine azide ( FN3), hydrogen iodide (HI), nitrogen ( N2), methane ( CH4), nitrous oxide ( N2O), and ozone ( O3). Utilizing the Computer Simulation Technology (CST) Studio Suite 2024, we simulate the detection process, focusing on advanced techniques and miniature flexible structures. The sensor’s active element is a graphene patch embedded within a polyimide (Kapton) film, which allows for precise determination of the RF planar resonant structure’s frequency response. The graphene–Kapton biosensor is shown to have remarkable detection performance, as demonstrated by the results of the simulation, with a diffusivity of 9.09e−08[m2∕S] , an accuracy of 6.62e−13 , and a power loss of 1.5mW . These findings highlight the sensor’s potential as an effective tool for detecting and identifying toxic gases with high precision and efficiency.
Marine biomass (MB) is gaining attention as a sustainable and eco-friendly carbon source within the carbon cycle, particularly in regions with extensive coastlines. However, the high content of alkali and alkaline earth metals (AAEMs) in MB poses challenges in producing functional carbon materials, like activated carbon (AC), with a high specific surface area (SSA). In this study, we employed a two-step CO2 activation process, coupled with acid treatment, to successfully convert MB into highly porous AC. Preheating followed by nitric acid washing reduced AAEM content from 22.4 to 2.5 wt%, and subsequent atmospheric CO2 activation produced AC with an SSA of 1700 m2/ g and mesopores of 3–5 nm. A further treatment with a mixed acid solution of nitric and acetic acids reduced impurities to below 1.0 wt%. A second pressurized CO2 activation at 1 MPa yielded AC with an SSA exceeding 2100 m2/ g, with mesopores accounting for more than 50% of the total pore volume. This method demonstrates an effective approach to producing high-performance AC from MB for advanced applications.
This paper is devoted to synthesizing a new type of CDs (carbon dots) with excellent NIR (near-infrared) emission in a biological water environment synthesized from small molecules. Citric acid was adopted as the precursor and treated by one-pot hydrothermal process in DMF solution with the assistance of a microwave. Urea (MH) and ammonium fluoride (MF) were adopted as nitrogen sources to synthesize two types of CDs, respectively. These conditions contributed to generate nanostructured carbon with a higher content of Pyrrolic-N, enrich the functional groups, and exfoliate the ordered layerstacking structure, which finally contributed to the higher NIR absorption band at 808 nm. The physicochemical properties and photothermal conversion ability were fully evaluated by UV–Vis-NIR (ultraviolet–visible light-NIR) absorption and photothermal experiments. MF possessed stronger absorption property and temperature-rising effect in the NIR region than MH, but both exhibited desirable photothermal stability. Next, the in vitro and in vivo experiments demonstrated that both MF and MH exhibited no significant toxicity for cells. NIR irradiation on CDs solution displayed an excellent killing effect on HeLa (breast cancer) and MCF7 (cervical cancer) cells but strongly depended on the concentration of CDs. MH had a weaker killing effect on MCF7 cells compared with MF in the same concentration. But HeLa cells suffered death from lower concentration of MH under NIR irradiation. Both MH and MF exhibited excellent therapy effects and no obvious tissue damage for these major organs of nude mice and BALB/C mice. Above all, both MF and MH with excellent photothermal effect under NIR irradiation had desirable NIR-triggered therapeutic effect on MCF7 and HeLa cells, while they also exhibited good biocompatibility without NIR irradiation.
Mechanical exfoliation has been a preferred method for obtaining various two-dimensional (2D) materials due to its ability to produce high-quality thin flakes. However, traditional exfoliation techniques often yield flakes of limited size and low yield. Herein, we present a systematic approach to improve mechanical exfoliation by using vacuum treatment to enhance the van der Waals forces between the substrate and the 2D material. This method comprises oxygen plasma cleaning followed by vacuum treatment, effectively removing organic adsorbates from the substrate and maximizing contact between the outermost layer of 2D material and the substrate. This vacuum-assisted exfoliation approach substantially enhances both the yield and flake size of graphene, resulting in single-layer graphene (SLG) flakes approximately eighty times larger than those achieved through conventional methods. The quality of the exfoliated SLG was assessed using Raman spectroscopy and atomic force microscopy (AFM), which confirmed that it is highly similar to that obtained from conventional exfoliation. Furthermore, the exfoliated SLG flakes were encapsulated between hexagonal boron nitride (hBN) layers and fabricated into SLG field-effect transistors (FETs). These devices exhibited high-performance characteristics, yielding a field-effect mobility (μ) of approximately 110,000 cm2∕V ⋅ s at room condition, demonstrating the effectiveness of the vacuum-assisted exfoliation method in producing high-quality, large-area graphene suitable for advanced electronic applications.
The one-electron states of (7,38) armchair graphene nanoribbon (AGNR) have been investigated in the ground and excited singlet electronic states by a multi-configuration ensemble density functional theory method. The quasiparticle energies for both electron removal and electron addition states were used to construct the electronic bands of the bulk and zigzag edge states of the ribbon. The zigzag edge states of the ribbon are dispersionless and localized at the ribbon termini. Energetically, the electron removal and electron addition edge states are separated by 2.4 eV, which is in good agreement with the experimentally measured splitting of 2.45±0.10 eV in AGNR of similar length. Excitation of the edge electrons results in a highly electrically polarized singlet excited state, where some of the delocalized bulk orbitals become confined within the structural units (anthracene), thus leading to the formation of Wannier–Stark ladder states.
Plastic wastes such as polyethylene terephthalate have recently been incorporated into coal as additives in coke manufacturing. Plastic waste results in the reduction of high-quality coal usage while protecting the environment. Using coal tar pitch as an additive in the coal blend causes an increase in fluidity during carbonization. The volatile matter released during carbonisation affects coal thermoplasticity, hence the carbon structural parameters. This paper investigates the role of polyethylene terephthalate and the mixture of polyethylene terephthalate and coal tar pitch on carbon structure formation during coal to coke transformation. The additives were blended with coking coal in 2, 3, 4, 5, and 10% wt. The results imply that incorporating coal tar pitch into the coal/ polyethylene terephthalate mixture improves the crystallite height of the resulting semi-coke. The addition of coal tar pitch and polyethylene teraphthalate blend to coking coal at a percentage below 5%wt. leads a positive impact on the crystallite height of the resulting coal char. The incorporation of coal tar pitch into the blend decreased the average interlayer spacing. At elevated temperatures, the polyethylene terephthalate in the blend causes an increase in the mean tortuosity. However, incorporating coal tar pitch into the blend led to about 3.3% decrease in mean tortuosity.
The high-rate performance of lithium/fluorinated carbon (Li/CFx) battery remains a challenge due to poor discharge dynamics behavior accompanied by the overheating issue. We developed a novel fluorinated reed-carbon with three-dimensional (3D) porous channels to favor discharge dynamics behavior achieving excellent discharge performance as high as 5 C. Typically, the preparation of fluorinated reed-carbon mainly involves three steps, namely, crushing into powders, pre-carbonization of reed and precise fluorination. During the fluorination process, we precisely controlled the fluorination temperature in range of 330–370 °C and gas ratio ( F2 of ~ 15 vol%) to optimize the fluorine carbon ratio. This kind of CFx possesses the novel structure at the scale of micron level ranging from 0.5 to 3 μm, which favors the electrolyte and charge transport through the channels smoothly. This 3D porous structure increases the specific surface area of the CFx material, providing more chemical reaction sites to enhance discharge dynamics behavior and effectively hinder the volume expansion of batteries, which is conductive to improve the high-rate performance of Li/CFx battery. This low-cost and facile approach opens up a novel pathway to design carbon materials and CFx for Li/CFx battery.
Developing advanced anode materials is one of the effective strategies to enhance the electrochemical performance of sodiumion batteries (SIBs). Herein, inspired by the biological central nervous system structure, we report a facile and efficient strategy to fabricate the three-dimensional hierarchical neural network-like carbon architectures, where the glucose-derived hard carbon (HC) nanospheres are in situ assembled and embedded in carbon nanotube (CNT) network nanostructure (HC/CNT hybrid networks). The HC nanospheres with large carbon interlayer spacing help to decrease the diffusion length of sodium ions and the interconnected CNT networks enable the rapid electron transfer during charge/discharge process. Benefiting from these structure merits, the as-made HC/CNT hybrid networks can deliver a superior rate capacity of 162 mA h g− 1 at the current density of 5 A g− 1. Additionally, it exhibits excellent cycling performance with a capacity retention rate of 86.3% after 140 cycles. This work offers a promising candidate anode material for SIBs and a new prospect towards carbon-based composites design, simultaneously.
As increasing markets for Lithium‒ion battery (LiB), several environmental issues have attained great attention. Especially, the organic solvent N‒Methyl‒2‒Pyrrolidone (NMP), commonly used in the traditional slurry casting process for fabricating LiB electrodes, will be about to be regulated due to its toxicity and the environmental concerns. Therefore, the production of LiB electrodes by a dry process without using NMP organic solvents is of special interest nowadays. In the dry process, it is generally accepted that 1‒dimensional carbon materials like carbon nanotubes (CNT) are beneficial than conventional carbon conductor such as carbon blacks (CB). However, CB is inevitably included during the CNT production, simultaneously as an impurity. Refining CNT from CNT/CB mixture can cause another cost obviously. On the other hand, there have been limited information to study dispersion of carbon materials in electrode with respect to dispersion method and types of carbon conductor. Here, we systematically test the effect of dispersibility of carbon conductor in electrode according to dispersion method and type of carbon conductors. In addition, effect of CB amount in carbon conductor are also elucidated on manufacturing procedure, properties of electrode and their electrochemical performances.
In the area of carbon-based thin films, graphene/polyimide conductive films display remarkable heat resistance and mechanical properties, making them a valuable resource for utilisation in a multitude of manufacturing and living contexts. Nevertheless, modulating the interfacial structure between graphene and polyimide represents a significant challenge in the pursuit of enhancing the conductivity of the composite films, due to the elevated initial temperature of polyimide pyrolysis (exceeding 600 °C). To develop it, this study found that polyimide could undergo chemical bond breaking and atomic rearrangement at around 500 °C, when subjected to an applied electric field in graphene/polyimide films. A series of characterisations showed that the graphene/polyimide film formed a new interfacial structure under electrothermal treatment, which enhanced the electron transport capacity and increased its conductivity from about 1497.01 s m− 1 to about 2688.17 s m− 1, with an increase of about 79.57%. This study would provide the possibility of modulating the structure of polyimide below the pyrolysis temperature, as well as a feasible idea for transferring the properties of graphene into the polyimide matrix.
Ibuprofen (IBU), a common pharmaceutical and personal care product (PPCP), is a pervasive water pollutant with adverse ecological and human health effects after transformation and accumulation. In this study, we synthesized Fe, N-doped carbon quantum dots (Fe, N-CQDs) using pig blood and FeCl3 as a precursor via a one-step hydrothermal method. TEM, XRD, XPS, and UV–Vis were used to characterize the physical and chemical properties of Fe, N-CQDs. We investigated the feasibility of Fe, N-CQDs in activating peroxymonosulfate (PMS) for IBU degradation under visible light. The experimental results revealed that Fe in Fe, N-CQDs predominantly formed a stable complex through Fe–N and Fe-OH, with a high degree of graphitization and a sp2- hybridized graphitic phase conjugate structure. The Fe, N-CQDs/Light/PMS system exhibited strong activity, degrading over 87% of IBU, maintaining a wide pH range (3–10) adaptability. Notably, Fe, N-CQDs acted as visible-light catalysts, promoting Fe3+/ Fe2+ cycling and PMS activation, generating both free radicals ( SO4 •–, ·OH) and non-radicals (1O2, h+) to effectively degrade IBU. This study presents an innovative approach for the sustainable utilization of pig blood as a biomass precursor to synthesize Fe- and N-doped carbon materials. This study provides a new approach for the sustainable and value-added utilization of natural wastes and biomass precursors of Fe- and N-doped carbon materials, which can be used to treat pollutants in water while treating discarded pig blood.
Nitrite is commonly found in various aspects of daily life, but its excessive intake poses health risks like blood oxygen transport impairment and cancer risks. Accurate detection of nitrite is crucial for preventing its potential harm and ensuring public health. In this work, Cu–Co bimetallic nanoparticles (NPs) incorporated nitrogen-doped carbon dodecahedron (Cu/ Co@N–C/CNTs-X, where X denotes the carbonization temperatures) are synthesized by facile carbonization of CuO@ZIF- 67 composites. Cu and Co NPs are uniformly embedded in the carbon dodecahedron decorated by carbon nanotubes (CNTs) without agglomeration. Combining the superior catalytic from Cu and Co NPs with the electrical conductivity and stability from the carbon frameworks, the Cu/Co@N–C/CNTs-600 composite as catalyst detected nitrite concentrations ranging from 1 to 5000 μM, with sensitivity values of 0.708 μA μM–1 cm– 2, and a detection limit of 0.5 μM. Moreover, this sensor demonstrated notable selectivity, stability and reproducibility. The design of Cu/Co@N–C/CNTs-X catalysts prepared in this study can be used as an attractive alternative in the fields of food quality and environmental detection.
Optimizing business strategies for energy through machine learning involves using predictive analytics for accurate energy demand and price forecasting, enhancing operational efficiency through resource optimization and predictive maintenance, and optimizing renewable energy integration into the energy grid. This approach maximizes production, reduces costs, and ensures stability in energy supply. The novelty of integrating deep reinforcement learning (DRL) in energy management lies in its ability to adapt and optimize operational strategies in real-time, autonomously leveraging advanced machine learning techniques to handle dynamic and complex energy environments. The study’s outcomes demonstrate the effectiveness of DRL in optimizing energy management strategies. Statistical validity tests revealed shallow error values [MAE: 1.056 × 10(− 13) and RMSE: 1.253 × 10(− 13)], indicating strong predictive accuracy and model robustness. Sensitivity analysis showed that heating and cooling energy consumption variations significantly impact total energy consumption, with predicted changes ranging from 734.66 to 835.46 units. Monte Carlo simulations revealed a mean total energy consumption of 850 units with a standard deviation of 50 units, underscoring the model’s robustness under various stochastic scenarios. Another significant result of the economic impact analysis was the comparison of different operational strategies. The analysis indicated that scenario 1 (high operational costs) and scenario 2 (lower operational costs) both resulted in profits of $70,000, despite differences in operational costs and revenues. However, scenario 3 (optimized strategy) demonstrated superior financial performance with a profit of $78,500. This highlights the importance of strategic operational improvements and suggests that efficiency optimization can significantly enhance profitability. In addition, the DRL-enhanced strategies showed a marked improvement in forecasting and managing demand fluctuations, leading to better resource allocation and reduced energy wastage. Integrating DRL improves operational efficiency and supports long-term financial viability, positioning energy systems for a more sustainable future.