검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,361

        201.
        2023.11 구독 인증기관·개인회원 무료
        Various dry active wastes (DAWs) have been accumulated in nuclear power plants since the DAWs are mostly combustible. KAERI has developed a thermochemical treatment process for the used decontamination paper as an operational waste to substitute for incineration process and to decontaminate radionuclides from the DAWs. The thermochemical process is composed of thermal decomposition in a closed vessel, chlorination of carbonated DAWs, separation of soluble chlorides captured in water by hydroxide precipitation, and immobilization of the precipitate. This study examined the third and fourth steps in the process to immobilize Co-60 by fabricating a stable wasteform. Precipitation behaviors were investigated in the chloride solution by adding 10 M KOH. It was shown that the precipitates were composed of Mg(OH)2 and Al(OH)3. Then, the glass-ceramic wasteform for the precipitates were produced by adding additive mixtures in which silica and boron oxide were blended with various ratios. The wasteform was evaluated in terms of volume reduction ratio, bulk density, compressive strength, and leachability.
        202.
        2023.11 구독 인증기관·개인회원 무료
        In the ocean, there exist infinite resources, including certain metallic elements that can serve as potential energy sources. One of the methods for extracting these dissolved resources from seawater involves adsorption. This study discusses the results of experiments conducted in real seawater using a developed fiber-type adsorbent capable of extracting dissolved oceanic resources. The fiber-type adsorbent was deployed in seawater to adsorb the elemental resources. It was then retrieved after 2, 3, and 4 weeks for evaluation of its adsorption performance. The evaluation was carried out by dissolving the adsorbent in a strong acidic solution and calculating the adsorption amount per gram of adsorbent using ICP-MS. The results indicated that the adsorption performance was slightly lower than previously reported values. Nevertheless, it confirmed the feasibility of adsorbing and recovering dissolved resources from actual seawater
        203.
        2023.11 구독 인증기관·개인회원 무료
        Recently, BNS (Best System) developed a system for evaluation and classification of soil and concrete wastes generated from nuclear power plant decommissioning. It is composed of various modules for container loading, weight measurement, contamination evaluation, waste classification, stacking, storage and control. The contamination evaluation module of the system has two sub modules. One is for quick measurement with NaI (Tl) detector and the other is for accurate measurement with HPGe detector. The container used at the system for wastes handling has capacity of 100 kg and made of stainless steel. According to the measurement result of Co-60 and Cs-137, the waste is classified as waste for disposal or waste for clearance. Performance of the system was demonstrated using RM (Reference Material) radiation source. This year, necessity of system improvement was suggested due to revised operation requirements. So, the system should show throughput of more than 1 ton/hr and Minimum Detectable Activity (MDA) of less than 0.01 Bq/g (1/10 of criteria for regulatory clearance) for Co-60 and Cs-137. And soil waste become main target of the system. For this, the container used for soil waste handling should have capacity of 200 kg. As a result, material for the container need to be changed from stainless steel to plastic or FRP (Fiber Reinforced Plastics). And large area detector should be introduced to the system to enhance processing speed of the system. Additionally, container storage rack and conveyor system should be modified to handle 200 kg capacity container. Finally, moving path of the container will be redesigned for enhanced throughput of the system. In this paper, concept development of the system was suggested and based on that, system development will be followed.
        204.
        2023.11 구독 인증기관·개인회원 무료
        The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
        205.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning of nuclear facilities happens, large amounts of radioactive wastes are released. Because costs of nuclear decommissioning are enormous, effective and economical decontamination technologies are needed to remove radioactive wastes. During NPP operation, corrosion product called Chalk River Unidentified Deposits (CRUD) is generated. CRUD is an accumulation of substances and corrosion products consisting of dissolved ions or solid particles such as Ni, Fe, and Co on the surface of the NPP fuel rod coating. CRUD is slowly eroded by the circulation of hot pressurized water and later deposits on the fuel rod cladding or external housing, thereby reducing heat production by the nuclear fuel. Decontamination of radiologically contaminated metals must be performed before disposal, and several methods for decontaminating CRUD are being studied in many countries. Decontamination technology is an alternative to reducing human body covering and reducing radioactive waste disposal costs, and much research and development has been conducted to date. Currently, the importance of decontamination is emerging as the amount of waste stored in radioactive waste storage is close to saturation, and the amount of radioactive waste generated must be minimized through active decontamination. In this study, a preliminary study was conducted on the removal of CRUD by multiple membrane in an electro-kinetic process using an electrochemicalbased decontamination method. Preliminary research to develop a technology to electrochemically remove CRUD by using a self-produced electrochemical cell to check the pH change over time of the CRUD cell according to voltage, electrolyte, membrane and pH change.
        206.
        2023.11 구독 인증기관·개인회원 무료
        During the operation of a nuclear power plant (NPP), corrosion products called CRUD (Chalk River unidentified deposit) accumulate on the surface of the primary system. The CRUD components of pressurized light water reactors or heavy water reactors, represented by (NixFe1-x)(FeyCr1-y)2O4, are composed of Fe3O4, NiFe2O4, FeCr2O4, NiCr2O4, etc. Radionuclide such as Co-60 are deposited within this CRUD, so the entire deposited material must be dissolved and removed for decontamination. Chemical decontamination has the advantage of being able to decontaminate a wide metal surface, but has the disadvantage of generating a large amount of secondary waste. Recently, chemical decontamination methods that add an electrodynamic process are being studied to overcome these shortcomings. This technology is a method of dissolving CRUD by applying an electric field in the anodic compartment of a cell separated by CEM. It is a method of accelerating CRUD dissolution by generating a large amount of hydrogen ions in the anodic compartment. Dissolved metal ions pass through the CEM (cation exchange membrane) and move to the cathodic compartment (pH > 12), where they are removed by adsorption or precipitation process. Therefore, the speciation characteristics between decontamination agent (oxalic acid) and metal ions are very important. In this study, we investigated the speciation characteristics of Fe(II), Ni(II), Co(II) - oxalate, which are important complex species in CRUD dissolution cells. The thermodynamic equilibrium constant for hydrolysis of each ion and of M(II)-oxalate were collected and speciation characteristics were analyzed using the MINEQL 5.0 program. From the speciation characteristics of M(II)-oxalate, effective radionuclide removal methods in an electrodynamic cell were considered.
        207.
        2023.11 구독 인증기관·개인회원 무료
        The primary heat transport system consists mainly of the in-core fuel channels connected to the steam generators by a system of feeder pipes and headers. The feeders and headers are made of carbon steel. Feeders run vertically upwards from the fuel channels across the face of the reactor and horizontally over the refueling machine to the headers. Structural materials of the primary systems of nuclear power plants (NPPs) are exposed to high temperature and pressure conditions, so that the materials employed in these plants have to take into accounts a useful design life of at least 30 years. The corrosion products, mainly iron oxides, are generated from the carbon steel corrosion which is the main constituent of the feeder pipes and headers of this circuit. Typical film thickness on CANDU-PHWR surface is 75μm or 30mg/cm2. Deposits on PHWR tends to be much thicker than PWR due to use of carbon steel and also for the source of corrosion products available on the carbon steel surface. Degradation of carbon steel for the feeder pipes transferring the primary system coolant by flow-assisted corrosion in high temperature has been reported in CANDU reactors including Point Lapreau, Gentully-2, Darlington and Bruce NPPs. The formation of Fe3O4 film on a carbon steel surface reduces the dissolution rate of steel substantially. The protectiveness of the Fe3O4 film over the carbon steel is affected by the environmental factors and the operational parameters of the feeder pipes, including the velocity, wall shear stress, solution pH, temperature, concentration of dissolved iron, quality of solution, etc. For effective chemical decontamination of these thick oxides containing radionuclides such as Co-60, it is necessary to understand the corrosion behaviors of feeder pipes and the characteristics of oxide formed on it. In this work, we investigated the growth of oxide films that develop on type SA-107 Gr. B carbon steel in high temperature water and steam environment by scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GD-OES) for the quantification and the solidstate speciation of metal oxide films. This study was especially focused to set the experimental tests conditions how to increase the oxide thickness up to 50 m by changing the oxidation conditions, such as solution chemistry and thermo-hydraulic conditions both temperature and pressure and so on.
        208.
        2023.11 구독 인증기관·개인회원 무료
        Decontamination is one of the important processes for dismantling nuclear power plants. The purpose of decontamination is to reduce the radiation levels of contaminated nuclear facilities, ensuring the safety of workers involved in decommissioning and minimizing the amount of radioactive waste. In this study, we investigate the reaction mechanisms and their thermodynamic energies of the HyBRID (Hydrazine-Based Reductive participated metal Ion Decontamination) process for decontamination of the primary coolant system of a nuclear power plant. We computed the thermodynamic properties of HyBRID dissolution mechanisms in which corrosion metal oxides accumulated in the primary coolant systems along with radionuclides are dissolved by HyBRID decontamination agents (H2SO4/N2H4/CuSO4). The HyBRID reaction mechanism has been studied using a commercial database (HSC Chemistry®), but Cu ions have been used instead of Cu-hydrazine complexes when calculating reactions due to the absence of thermodynamic properties for Cu-hydrazine complexes. To address this limitation, we supplemented the quantum calculations with Cu-hydrazine complexes using the density functional calculations. It is intended to simulate a more practical reactions by calculating the reactions considering Cu-hydrazine complexes, and to improve understanding of the HyBRID dissolution reactions by qualitatively and quantitatively comparing the reactions without considering the complex formation.
        209.
        2023.11 구독 인증기관·개인회원 무료
        According to acceptance of radioactive waste, homogeneous waste such as concentrated liquid waste and spent resin must be solidified to reduce radiological hazards and protect public health and the ecology. However, when using a High Integrity Containers (HIC), it is stated that homogeneous waste can be disposed of without applying the solidification test requirements. PCHIC, developed in korea, is composed of polyethylene (PE, interior), polymer concrete (PC, filler), and steel (external reinforcement). Currently, PC-HIC will be used as a packaging container for low-level liquid waste and spent resin waste. PE has a lower shielding efficiency compared to PC, but it offers the economic advantage of lower production costs. Therefore, cost savings can be expected if very low-level waste is packaged and disposed of HIC made only of PE materials (PEHIC). Despite the economical advantage of PE-HIC, PE-HIC has not been used domestically since NRC (Nuclear Regulatory Commission) reported that PE-HIC couldn’t meet the mechanical integrity criteria for radiation exsure. However, according to IAEA (International Atomic Energy Agency) research, it has been reported that mechanical integrity of PE-HIC is not affected when the absorbed dose is below 50 kGy. Therefore, in this study, Radiological impact of VLLW packaged into PE-HIC is evaluated to confirm that the absorbed dose is below 50 kGy, which then be used to assess feasibility of PE-HIC to be used as packaging and disposal container for radioactive waste. Radiological impact of VLLW packaged into PE-HIC is evaluated to confirm that the absorbed dose is below 50 kGy, which then be used to assess feasibility of PE-HIC to be used as packaging and disposal container for radioactive waste. The feasibility of using PE-HIC as packaging-disposal containers for radioactive waste will be reviewed. In this study, the radiation effects of only waste packaged in PE-HIC were considered, and additional assumptions are as follows. - Nuclides subject to radioactivity evaluation: Co-60, Cs-137 - Radioactivity concentration: very low-level radioactive wastel concentration limit - Target waste: waste resin - PE-HIC dimensions: outer diameter: 1,194 mm, height: 1,290 mm, and thickness 88 mm (PCHIC internal PE shape) Considering the above assumption, the exposure rate was evaluated using the MicroShield program. Since the density of PE-HIC in the MicroShield program was assumed as the density of air. The absorbed dose was recalculated through density correction of the derived exposure rate. As a result, it was confirmed that absorbed dose was about 2-3 mGy over 300 years. As a result of dose evaluation by MicroShield, it is judged that the mechanical integrity of PEHIC as an packaging of VLLW can be proved by confirming that the absorption dose irradiated to PE-HIC by internal waste is less than 50 kGy.
        210.
        2023.11 구독 인증기관·개인회원 무료
        The treatment process for Spent Filter(SF) of Kori-1 was developed that includes the following : 1) Taking out by robot system 2) Screening by ISOCS 3) Collection of representative samples using a sampling machine 4) Compression 5) Immobilization 6) Packaging and nuclide analysis and 7) Delivery/disposal. Although the robot system, ISOCS, sampling machine and immobilization facility are essentially required for building the above processing but decision to build the compression system and nuclide analysis system must be made after reviewing the need and cost benefit for their construction. In addition, for effcient SF treatment, it is necessary to determine the nuclide concentration range of the SF to which immobilization will be applied. In this study, a cost benefit analysis was performed on existing and alternative methods for processes related to compression treatment, nuclide analysis and immobilization methods, which are greatly affected by economics and efficiency according to the design. First, although the disposal cost is reduced with reducing the number of packaging drums by compressed and packaged but the expected benefits not be equal to or greater than the cost invested in building a compression system. As a result, non-compressed treatment of SF is expected to be economical because the construction cost of compression system is more expensive than the benefits of reducing disposal costs by compression. Second, a cost benefit analysis of direct and indirect nuclide analysis methods was performed. For indirect analysis, scaling factors should be developed and the drum scanner suitable for the analysis for DAW should be improved. As a result, direct analysis applied grouping options is expected to be more economical than indirect analysis requiring the cost for developing scaling factors and improving the scanner. Third, it is timeconsuming and inefficient to distinguish and collect filters that are subject to be immobilized according to the waste acceptance criteria among the disorderly stored SFs in the filter rooms. If the benefits of immobilization of the SFs selectively are not greater than the benefits of immobilization of all SFs, it can be economical to immobilize all SFs regardless of the nuclide concentration of them. As a result, it is more economical to immobilize all SFs with various nuclide concentrations than to selectively immobilize them. The conclusion of this study is that it is not only cost-effective but also disposal-effective to design the treatment process of SF to adopt non-compressed processing, direct analysis and immobilization of all SFs.
        211.
        2023.11 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF) for fuel examinations. The facility has pools and hot cells for handling and examining fuel assemblies and rods. Among the hot cells, the second cell is for measuring rod internal pressure (RIP) and then cutting the rod to make samples for destructive tests. Currently, the cutting machine is broken, so it has to be replaced. Because the existing cutting machine consists of many parts and its size was quite a bit large to handle and treat for the radioactive waste disposal, the disassembly work has been performed to make it smaller using manipulators. The drawings of the cutting machine were reviewed and the disassembly tools were developed considering workability when the work performed at the hot cell using the manipulators. The large parts such as motor, mirror and cable, etc., were able to be disassembled and the machine size became so smaller that it could be easily handled for the disposal.
        212.
        2023.11 구독 인증기관·개인회원 무료
        It is crucial to be sure about the safety of nuclear facilities for human resources who are in danger of radioactive emission, also diminishing the volume of the wastes that are buried under the ground. Chemical decontamination of nuclear facilities can provide these demands at the same time by dissolving the oxide layer, which radionuclides such as 60Co and 58Co have been penetrated, of parts that are utilized in nuclear plants. Although there are many commercial methods to approaching its aim and they perform a high decontamination factor, they have some issues such as applying organic acids which have the ability to chelate with radionuclides that can be washed by underground water, have large quantities of radioactive waste and damage to the surface by severe intergranular attack. A new method has been introduced by KAERI’s scientist which is named the HyBRID Process, in this process the main solution is the acidic form of Hydrazine. In this process, like other acid-washing processes, there is a chance of corrosion on the metal surface which is not desired. The metal surface is able to be protected during dissolving process by adding some organic and inorganic corrosion inhibitors such as PP2 and PP3. There is a very new research topic about ionic liquids (ILs) as corrosion inhibitors which illustrates a vast potential for this application due to their tunable nature and the variety of options for cationic and anionic parts. The key factors for ILs corrosion inhibitors such as the hardness properties are summarized. In this study, we review to the fundamentals and development of corrosion inhibitors for chemical decontamination and give an prospect with emphasis on the challenges to be overcome.
        213.
        2023.11 구독 인증기관·개인회원 무료
        The radiation field generated in the primary cooling system of a nuclear power plant tends to increase in intensity as radionuclides bind to the oxide film on the internal surface of the primary system, which is operated at high temperature and pressure, and as the number of years of operation increases. Therefore, decontamination of the primary cooling system to reduce worker exposure and prevent the spread of contamination during maintenance and decommissioning of nuclear power plants uses the principle of simultaneous elution of radionuclides when the corrosion oxide film dissolves. In general, a multi-stage chemical decontamination process is applied, taking into account the spinel structure of the corrosion oxide film formed on the surface of the primary cooling system, i.e. an oxidative decontamination step is applied first, followed by a reductive decontamination step, which is repeated several times to reach the desired decontamination goal. Currently, permanganic acid is commonly used in oxidative decontamination processes to remove Cr from corrosion oxide films. In the reductive decontamination step to remove iron and nickel, organic acids such as oxalic acid are commonly used. However, organic acids are not suitable for the final radioactive waste form. A number of multi-stage chemical decontamination technologies for primary cooling systems have been developed and commercialized, including NP-CITROX, AP/NP-CANDECON, CANDERM, AP/NP-LOMI and HP/CORD-UV. Among these, HP/CORDUV is currently the most actively applied primary cooling system chemical desalination process in the world. In this study, KAERI has developed a new chemical decontamination technology that does not contain organic chemical decontamination agents, with a focus on securing an original technology for reducing the amount of decontamination waste while having equivalent or better decontamination performance than overseas commercial technologies, and compared it with the inorganic chemical agent-based HyBRID (Hydrazine Based Reductive Metal Ion Decontamination) chemical decontamination technology.
        214.
        2023.11 구독 인증기관·개인회원 무료
        There are analytical methods used for measuring activity when light photons are emitted for scintillating-based analytical application. When this electron returns to the original stable state, it releases its energy in the form of light emission (visible light or ultraviolet light), and this phenomenon is called scintillation. Scintillator is a general term for substances that emit fluorescence when exposed to radiation such as gamma-rays. Radioactivity is all around us and is unavoidable because of the ubiquitous existence of background radiations emitted by different sources. The scintillator contributes to these sensing, and it is expected that the inspection accuracy and limit of detection will be improved and new inspection methods will be developed in the future. Moreover, scintillators are chemical or nanomaterial sensors that can be used to detect the presence of chemical species and elements or monitor physical parameters on the nanoscale. In this study, it includes finding use in scintillating-based analytical sensing applications. A chemical and nanomaterial based sensors are self-contained analytical tools that could provide information about the chemical compositions or elements of their environment, that is, a liquid or even gas condition. Herein, we present an insightful review of previously reported research in the development of high-performance gamma scintillators. The major performance-limiting factors of scintillation are summed up here. Moreover, the 2D material has been discussed in the context of these parameters. It will help in designing a prototype nanomaterial based scintillators for radiation detection of gamma-ray.
        215.
        2023.11 구독 인증기관·개인회원 무료
        Chelate resin is a resin that has an exchange group which can form chelates with various metal ions. It shows higher selectivity for metal ions than ion exchange resin and can selectively remove characteristic metal ions. In an aqueous solution containing metal ions, chelate resin can adsorb specific metal ions, and the separated chelate resin can desorb the adsorbed metal ions by changing temperature or pH, so chelate resin has the advantage of being reusable. Chelate resin has been used industrially as an adsorbent to adsorb and separate heavy metal ions in wastewater, and is also used for the purpose of recovering precious or rare metals contained in industrial wastewater or industrial waste. Against this background, there is a need to develop chelate resins with higher adsorption capacity. Acrylic fiber is defined as a man-made fiber made from a linear synthetic polymer with fiberforming ability consisting of more than 85% acrylonitrile. It is a man-made fiber that is often used as a substitute for wool because it has good thermal insulation properties like wool and is warm and soft to the touch. It is a fiber rich in cyano groups due to its high content of acrylonitrile, and has the advantage of being able to be used as a variety of functional fibers through modification of cyano groups. In this study, the amination reaction of acrylic fiber was performed using diethylenetriamine, and the adsorption characteristics for metal ions were evaluated according to the reaction conversion rate. In order to improve the amination efficiency, 400 kGy was irradiated using a 2.5 MeV electron beam accelerator, and through this, the crosslinking rate of acrylic fiber was able to be improved up to 80%. Water and ethanol were used as cosolvents for the amination reaction in a ratio of 60/40 vol/vol, respectively, and a reaction yield of 178% was obtained after 120 minutes of reaction. Using the chelate resin prepared in this way, the adsorption performance for metal ions was evaluated through Atomic Absorption Spectrometry analysis.
        216.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive contamination distribution in nuclear facilities is typically measured and analyzed using radiation sensors. Since generally used detection sensors have relatively high efficiency, it is difficult to apply them to a high radiation field. Therefore, shielding/collimators and small size detectors are typically used. Nevertheless, problems of pulse accumulation and dead time still remain. This can cause measurement errors and distort the energy spectrum. In this study, this problem was confirmed through experiments, and signal pile-up and dead time correction studies were performed. A detection system combining a GAGG sensor and SiPM with a size of 10 mm × 10 mm × 10 mm was used, and GAGG radiation characteristics were evaluated for each radiation dose (0.001~57 mSv/h). As a result, efficiency increased as the dose increased, but the energy spectrum tended to shift to the left. At a radiation dose intensity of 400 Ci (14.8 TBq), a collimator was additionally installed, but efficiency decreased and the spectrum was distorted. It was analyzed that signal loss occurred when more than 1 million particles were incident on the detector. In this high-radioactivity area, quantitative analysis is likely to be difficult due to spectral distortion, and this needs to be supplemented through a correction algorithm. In recent research cases, the development of correction algorithms using MCNP and AI is being actively carried out around the world, and more than 98% of the signals have been corrected and the spectrum has been restored. Nevertheless, the artificial intelligence (AI) results were based on only 2-3 overlapping pulse data and did not consider the effect of noise, so they did not solve realistic problems. Additional research is needed. In the future, we plan to conduct signal correction research using ≈10×10 mm small size detectors (GAGG, CZT etc.). Also, the performance evaluation of the measurement/analysis system is intended to be performed in an environment similar to the high radiation field of an actual nuclear facility.
        217.
        2023.11 구독 인증기관·개인회원 무료
        Decommissioning waste is generated with various types and large quantities within a short period. Concrete, a significant building material for nuclear facilities, is one of the largest decommissioning wastes, which is mixed with aggregate, sand, and cement with water by the relevant mixing ratio. Recently, the proposed treatment method for volume reduction of radioactive concrete waste was proven up to scale-up testing using unit equipment, which involved sequentially thermomechanical and chemical treatment. According to studies, the aggregate as non-radioactive material is separated from cement components with contaminated radionuclides as less than clearance criteria, so the volume of radioactive concrete waste is decreased effectively. However, some supplementation points were presented to commercialize the process. Hence, the process requires efficiency as possible to minimize the interface parts, either by integration or rearranging the equipment. In this study, feasibility testing was performed using integrated heating and grinding equipment, to supplement the possible issue of generated powder and dust during the process. Previously, heat treatment and grinding devices were configured separately for pilot-scale testing. But some problems such as leakage and pipe blockage occurred during the transportation of generated fine powder, which caused difficulties in maintaining the equipment. For that reason, we studied to reduce the interface between the equipment by integrating and rearranging the equipment. To evaluate the thermal grinding performance, the fraction of coarse and concrete fines based on 1mm particle size was measured, and the amount of residual cement in each part was analyzed by wet analysis using 4M hydrochloric acid. The result was compared with previous studies and the thermomechanical equipment could be selected to enhance the process. Therefore, it is expected that the equipment for commercialization could be optimized and composed the process compactly by this study.
        218.
        2023.11 구독 인증기관·개인회원 무료
        Economical radioactive soil treatment technology is essential to safely and efficiently treat of high-concentration radioactive areas and contaminated sites during operation of nuclear power plants at home and abroad. This study is to determine the performance of BERAD (Beautiful Environmental construction’s RAdioactive soil Decontamination system) before applying magnetic nanoparticles and adsorbents developed by the KAERI (Korea Atomic Energy Research Institute) which will be used in the national funded project to a large-capacity radioactive soil decontamination system. BERAD uses Soil Washing Process by US EPA (402-R-007-004 (2007)) and can decontaminate 0.5 tons of radioactive soil per hour through water washing and/or chemical washing with particle size separation. When contaminated soil is input to BERAD, the soil is selected and washed, and after going through a rinse stage and particle size separation stage, it discharges decontaminated soil separated by sludge of less than 0.075 mm. In this experiment, the concentrations of four general isotopes (A, B, C, and D which are important radioisotopes when soil is contaminated by them.) were analyzed by using ICP-MS to compare before and after decontamination by BERAD. Since BERAD is the commercial-scale pilot system that decontaminates relatively large amount of soil, so it is difficult to test using radioactive isotopes. So important general elements such as A, B, C, and D in soil were analyzed. In the study, BERAD decontaminated soil by using water washing. And the particle size of soil was divided into a total of six particle size sections with five sieves: 4 mm, 2 mm, 0.850 mm, 0.212 mm, and 0.075 mm. Concentrations of A, B, C, and D in the soil particles larger than 4 mm are almost the lowest regardless of before and after decontamination by BERAD. For soil particles less than 4 mm, the concentrations of C and D decreased constantly after BERAD decontamination. On the other hand, the decontamination efficiency of A and B decreased as the soil particle became smaller, but the concentrations of A and B increased for the soil particle below 0.075 mm. As a result, decontamination efficiency of one cycle using BERAD for all nuclides in soil particles between 4 mm and 0.075 mm is about 45% to 65 %.
        219.
        2023.11 구독 인증기관·개인회원 무료
        The process of carbonization followed by a high-temperature halogenation removal of radionuclides is a promising approach to convert low-radioactivity spent ion-exchange (IE) resins into freereleasable non-radioactive waste. The first step of this process is to convert spent ion-exchange resins into the carbon granules that are stable under high-temperature and corrosive-gas flowing conditions. This study investigated the kinetics of carbonization of cation exchange resin (CER) and the changes in structures during the course of carbonization to 1,273 K. Both of model-free and modelfitted kinetic analysis of mixed reactions occurring during the course of carbonization were first conducted based on the non-isothermal TGAs and TGA-FTIR analysis of CER to 1,272 K. The structural changes during the course of carbonization were investigated using the high-resolution FTIR and C-13 NMR of CER samples pyrolyzed to the peak temperature of each reaction steps established by the kinetic analysis. Four individual reaction steps were identified during the course of carbonization to 1,273 K. The first and the third steps were identified as the dehydration and the dissociation of the functional group of —SO3-H+ into SO2 and H2O, respectively. The second and the fourth steps were identified as the cleavage of styrene divinyl benzene copolymer and carbonization of pyrolysis product after the cleavage, respectively. The temperature and time positions of the peaks in the DTG plot are nearly identical to those of the peaks of the Gram Schmidt intensity of FTIR. The structural changes in carbonization identified by high-resolution FTIR and DTG are in agreement with those by C-13 NMR. The results of a detailed examination of the structural changes according to NMR and FTIR were in agreement with the pyrolysis gas evolution characteristics as examined by TGA-FTIR.
        220.
        2023.11 구독 인증기관·개인회원 무료
        KORAD (Korea Radioactive Waste Agency, http://www.korad.or.kr) has stored slightly contaminated ascon (asphalt coated concrete mixture) that was introduced to Gyeongju repository about a decade ago waiting for a final disposal. It is believed to be mainly contaminated by radioisotope 137Cs due to impurities introduced from the outside during the ascon manufacturing process. We studied characteristics of the radioactive waste to see whether this material would be proper enough to be disposed in Gyeongju LILW repository or be other ways to reduce the disposal volume including self-disposal before its final disposal otherwise. KORAD looked into the properness of characteristics of ascon in terms of WAC (Waste Acceptance Criteria) documented by KORAD that includes general chemical and physical properties of asphalt, density, size of grains, content of organic material and possibility of existence of chelate materials that qualitatively limited to be disposed by the criteria. And other associated characteristics such as gas generation and bio degradation were also investigated. Based on the data obtained from the study, we proposed various plausible solutions in associated with operational and disposal safety and economic view points. This study will be used for KORAD’s decision on how to control and safely dispose the spent ascon within a reasonable time period. And also those experiences may be applied for other LILW issues that require treatment or conditioning of radioactive wastes in the future.