검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,512

        1261.
        2022.05 구독 인증기관·개인회원 무료
        The spent filters stored in Kori Unit 1 are planned that compressed and disposed for volume reduction. However, shielding reinforcement is required to package high-dose spent filters in a 200 L drum. So, in this study suggests a shielding thickness that can satisfy the surface dose criteria of 10 mSv·h−1 when packaging several compressed spent filters into 200 L drums, and the number of drums required for the compressed spent filter packaging was calculated. In this study, representative gamma-emitting nuclides in spent filter are assumed that Co-60 and Cs-137, and dose reduction due to half-life is not considered, because the date of occurrence and nuclide information of the stored spent filter are not accurate. The shielding material is assumed to be concrete, and the thickness of the shielding is assumed to 18 cm considering the diameter of the spent filter and compression mold. Considering the height of the compressed spent filter and the internal height of the shielding drum, assuming the placement of the compressed spent filter in the drum in the vertical direction only, the maximum number of packaging of the compressed spent filter is 3. When applying a 18 cm thick concrete shield, the maximum dose of the spent filter can packaged in the drum is 125 mSv·h−1, so when packaging 3 spent filters of the same dose, the dose of a spent filter shall not exceed 41 mSv·h−1 and not exceed 62 mSv·h−1when packing 2 spent filters. Therefore, the dose ranges of spent filters that can be packaged in a drum are classified into three groups: 0–41 mSv·h−1, 41–62 mSv·h−1, and 62–125 mSv·h−1based on 41 mSv·h−1, 62 mSv·h−1, and 125 mSv·h−1. When 227 spent filters stored in the filter room are classified according to the above dose group, 207, 3 and 4 spent filters are distributed in each group, and the number of shielding drums required to pack the appropriate number of spent filters in each dose group is 75. Meanwhile, 8 spent filters exceeding 125 mSv·h−1 and 5 spent filters that has without dose information are excluded from compression and packaging until the treatment and disposal method are prepared. In the future, we will segmentation of waste filter dose groups through the consideration of dose reduction and horizontal placement of compressed spent filters, and derive the minimum number of drums required for compressed spent filter packaging.
        1262.
        2022.05 구독 인증기관·개인회원 무료
        As the number of nuclear power plants whose design life has expired worldwide increases, the attempts are continuing to complete the project of nuclear back-end cycle, the last task of the nuclear industry. Decontamination is essential in the process of dismantling nuclear facilities and restoration sites to remove all or some of the regulatory controls from an authorized facility. Among radioactive wastes, particularly contaminated soil is characterized by difficult physical decontamination because radionuclides are adsorbed between soil particles, that is, pores. Therefore, chemical decontamination is mainly used, which has the disadvantage of generating a lot of secondary waste. In order to overcome these disadvantages, an eco-friendly soil decontamination process is being developed that can drastically reduce the amount of secondary waste generated by using supercritical carbon dioxide. Supercritical carbon dioxide can easily control its physical properties and has both liquid and gas properties. However, since supercritical carbon dioxide is non-polar, additives are needed to extract polar metal ions, which are the goal of decontamination. Therefore, ligand with both CO2-philic and metal binding regions was selected. In previous studies, the decontamination efficiency of soil was evaluated by reacting contaminated soil with solid ligand and co-ligand at once. When solid ligands were used, the decontamination efficiency was lower than expected, which was expected because chemical substances were somewhat difficult to exchange in the closed process. In this study, in order to increase the efficiency of the decontamination process, the need for a process of liquefying ligand and continuously flowing it has been raised. Therefore, a co-solvent that dissolves well at the same time in SCCO2, ligand, and co-ligand was selected. In the selection process, a total of eight substances were selected by dividing into six polar substances and two non-polar substances through various criteria such as economic feasibility, eco-friendliness, and harmlessness. Thereafter, ethanol was finally selected through solubility evaluation for SCCO2 and additives. It is expected that a more effective decontamination process can be constructed when the additive is liquefied using a solvent selected from the results of this study.
        1263.
        2022.05 구독 인증기관·개인회원 무료
        Inorganic and organic ion exchange materials were generally applied to liquid processes in nuclear reactor. In the case of heavy-water reactor (HWR), zeolite, active carbon, anion resin, and cation resin were used to treat liquid processes such as reactor primary coolant cleanup and liquid radioactive waste management system. Then, used ion exchangers were stored at storage tanks. Various kinds of nuclides were adsorbed in ion exchange materials. Especially, C-14, long half-life nuclide, was highly concentrated in anion resin, and waste resin was treated as intermediated level radioactive waste (ILW). Thermal and non-thermal methods such as pyrolysis, incineration, catalytic extraction, acid digestion, and wet oxidation have been studied for treating spent resin. However, destructive methods are not suitable due to massive off gas waste containing radioactive species. To solve this problem, various kinds of processes were developed such as acid stripping, PLO process, activity stripping, thermal treatment, and etc. In this study, microwave method is suggested to treat HWR waste resin. C-14 nuclide was selectively removed from waste resin without decomposition of main structure in waste resin. Radioactive waste resin generated from Wolsung HWR unit 1 and unit 2 was treated using microwave method and 95% of C-14 was successfully removed from the radioactive waste resin.
        1264.
        2022.05 구독 인증기관·개인회원 무료
        The type of accidents associated with the operation of a melting facility for radioactive metal waste is assumed to only marginally differ from those associated with similar activities in the conventional metal casting industry or the current waste melting facility. However, the radiological consequences from a mishap or a technical failure differ widely. Three critical and at the same time possible accidents were identified: (1) activity release due to vapor explosion, (2) activity release due to ladle breakthrough, (3) consequences of failure in the hot-cell or furnace chamber not possible to remedy using remote equipment.
        1265.
        2022.05 구독 인증기관·개인회원 무료
        Laser scabbling experiments were conducted with the aim of developing concrete decontamination technology. Laser scabbling system contains a 6 kW fiber laser (IPG YLS-6000, λ=1,070 nm) and optical head, which are connected with process fiber (core dia.: 600 μm, length: 20 m). Optical head consists of two lenses (f = 160 mm and 100 mm) to collimate and focus laser beam. The focused laser beam is passed through the small diameter of nozzle (throat dia.: 3 mm) to prevent the laser-produced debris into head. And then, the focused beam is directed toward concrete block as continuously diverging. The diverged laser beam was incident on the high-strength concrete with 300 mm (length) × 300 mm (height) × 80 mm (width) to induce explosive spalling on the concrete surface. The optical head was moved by X-Y-Z manipulate coupled with a computerized numerical control while scabbling. We have observed not only active spalling on the concrete surface but energetic scattering of laserproduced debris when scabbling on high-strength concretes. It indicates the need for a device capable of collecting the laser-produced debris. We newly designed and manufactured dust collector coupled with cylindrical tube to prevent scattering of laser-produced debris into ambient environment. The collecting system was evaluated by estimating the collecting efficiency for laser-produced debris while scabbling. The collecting efficiency was calculated on the basis of the information on the mass loss of concrete block after laser scabbling and the mass of collected debris in a container. The collecting efficiency was found to be over 85%.
        1266.
        2022.05 구독 인증기관·개인회원 무료
        Currently, treatment and disposal suitability verification methods have not been established for radioactive waste, such as spent filters temporarily stored in each plant, so the WCP (Waste Certification Program) can be applied to verify the suitability of non-conforming waste at the site. In this study, WCP components such as certification organizations, certification methods, certification documents, and quality assurance (QA) plan that should be considered when developing WCP applicable to spent filter disposal were reviewed and presented. First, a certification organization consists of a certification organization that performs certification work, a certification support organization related to waste generation and treatment, and a quality control organization for waste certification. Especially, the support organization should support the implementation of WCP, so that spent filter processing procedures such as generation information management and immobilization can be properly packaged and transported. Second, in identifying the waste characteristics of the certification method, each characteristic identification procedure and certification method of the acceptance criteria should be described, evidence examining the suitability of general, radiological, physical, chemical, and biological requirements, and processes related to measurement and sampling should be established. In identifying characteristics, satisfaction of waste form, free water requirements, and whether it is subject to immobilization should be checked priorly, and a method of confirming particulate matter and securing filling rate when packaging compressed filters should be included. It is very important to develop a technology for verifying the safety and quality of the immobilized material because immobilization of the filters can be a processing method that satisfies various characteristic criteria. Meanwhile, it is essential to collect samples and develop scaling factors to identify the nuclides of filters and prove that they are below the concentration limits. For chemical and biological requirements, the characteristics are identified through generation information documents, corrective actions are taken and documented in case of nonconformance. Third, certification documents should include immobilization procedure manual, characteristic report, and characteristic test manuals such as free water, particulate matter and filling rate, radiation measurement method manual for packages, profile, and generation documents. Fourth, the QA plan should analyze the QA system of the plants, check the QA inspection details, establish general requirements for QA of spent filter disposal, and specify step-by-step certification work QA activities. In this study, considerations to ensure the disposal suitability at all stages from generation to disposal of spent filter were presented, and development of a WCP could contribute to preventing nonconformance.
        1267.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of Kori Unit 1 progresses, securing technology for treatment and disposal of radioactive wastes that have not been disposed of so far, such as spent filters, is recognized as an urgent task. In this study, a method of confirming the disposal suitability of spent filters was presented by reviewing the waste characteristics as presented in the waste acceptance criteria (WAC). The waste characteristics to be satisfied to ensure disposal suitability of waste are largely classified into general requirements, solidification and immobilization requirements, radiological requirements, physical requirements, chemical requirements, and biological requirements. First, the general requirement is to prove that the prohibited waste form has not been introduced into items related to waste form and packaging, and to confirm the suitability of disposal through step-by-step packaging photos, generation information, X-ray inspection, and visual inspection. Second, in the solidification and immobilization requirements, spent filters are non-homogeneous waste, and if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1 or more, they must be immobilized. Third, in order to meet the characteristic criteria for nuclides and radioactivity concentration, sampling and scaling factors development are required and based on this, nuclides must be identified and demonstrated to be below the disposal concentration limits. Surface dose rate and surface contamination should be measured in accordance with standardized procedures and disposal suitability should be confirmed through document tests recording the measured values. Fourth, in order to satisfy the physical requirements of the particulate matter and filling rate characteristics, the spent filter must be immobilized, if necessary, thereby ensuring disposal suitability. Meanwhile, free water in the spent filter should be removed through pre-drying and dehydration, and the disposal suitability should be confirmed by applying a test. Fifth, the criteria for chelating agents should be checked for disposal suitability through operation records and component analysis of spent filters, and documents, that can prove harmful substances are removed in advance and no harmful substances are included in the package, should be provided. Lastly, in biological requirements, if the spent filters contain corrosive or infectious substances, they should be removed in advance and disposal suitability should be confirmed by providing documents that can prove that such substances are not included in the package.
        1268.
        2022.05 구독 인증기관·개인회원 무료
        This study established a process to ensure the disposal suitability of spent filters stored in the untreated state in Kori unit 1 and presented the following procedures and requirements for confirming the disposal suitability for each process. The process for securing spent filter disposal suitability consists of collecting spent filters, compression, immobilization, analysis and packaging, and storage stages. The requirements for confirming the acceptance criteria for each process are as follows. (1) Collecting: Since the high radioactivity spent filters are being stored in the filter room of Kori unit 1, those are collected by a remote system to minimize the exposure dose of workers due to spent filter handling. In order to satisfy the surface dose rate requirements, spent filters with a surface dose rate of 10 mSv·hr−1 or more are classified and collected, and stored temporary storage place until a separate treatment plan is determined. The checkpoints in this process are the surface dose rate, etc. (2) Compression: The collected spent filters are analyzed gamma nuclides such as Co-60 and Cs-137, using a field-applicable nuclide analyzer, and then applying the scaling factors to determine whether it is disposable. Spent filters whose radioactivity concentration is confirmed to be less than the disposal concentration limit is compressed into compression ratios determined by surface dose rate. The checkpoints in this process are nuclide information, surface dose rate, compression ratio, spent filter loading quantity, etc. (3) Immobilization: A spent filter is a non-homogeneous waste that is immobilized with a proven safety material such as cement if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1. Meanwhile, immobilization of inhomogeneous waste can be considered to satisfy disposal criteria such as particulate matter and filling rate. The checkpoints in this process are the immobilizing material, filling rate, etc. (4) Analysis and Packaging: Immobilized drums shall be determined to be 95% or more of the total radioactivity of waste packages by measuring the radioactivity concentration of nuclides using a nuclide analysis device. Finally, measure the surface dose rate and surface contamination of the package, and attach the package label recording the identification number, date, total radioactivity, surface dose rate, and surface contamination information to the packaging container. (5) Storage: Packaging containers are moved to and stored in a temporary waste storage or storage area before disposal.
        1269.
        2022.05 구독 인증기관·개인회원 무료
        Today, the domestic and international nuclear power industry is experiencing an acceleration in the scale of the nuclear facility decommissioning market. This phenomenon is also due to policy changes in some countries, but the main reason is the rapid increase in the proportion of old nuclear power plants in the world, mainly in countries that introduced nuclear power plants in the early stages. Decontamination is essential in the process of decommissioning nuclear facilities. Among various decontamination targets, radionuclides are adsorbed between pores in the soil, making physical decontamination quite difficult. Therefore, various chemical decontamination technologies are used for contaminated soil decontamination, and the current decontamination technologies have a problem of generating a large amount of secondary wastes. In this study, soil decontamination technology using supercritical carbon dioxide is proposed and aimed to make it into a process. This technology applies cleaning technology using supercritical fluids to decontamination of radioactive waste, it has important technical characteristics that do not fundamentally generate secondary wastes during radioactive waste treatment. Supercritical carbon dioxide is harmless and is a very useful fluid with advantages such as high dissolution, high diffusion coefficient, and low surface tension. However, since carbon dioxide, a non-polar material, shows limitations in removing polar and ionic metal wastes, a chelating ligand was introduced as an additive. In this study, a ligand material that can be dissolved in supercritical carbon dioxide and has high binding ability with polar metal ions was selected. In addition, in order to increase the decontamination efficiency, an experiment was conducted by adding an auxiliary ligand material and ultrasonic waves as additives. In this study, the possibility of liquefaction of chelating ligands and auxiliary ligands was tested for process continuity and efficiency, and the decontamination efficiency was compared by applying it to the actual soil classified according to the particle size. The decontamination efficiency was derived by measuring the concentration of target nuclides in the soil before and after decontamination through ICP-MS. As a result of the experiment, it was confirmed that the liquefaction of the additive had a positive effect on the decontamination efficiency, and a difference in the decontamination efficiency was confirmed according to the actual particle size of the soil. Through this study, it is expected that economic value can be created in addition to the social value of the technology by ensuring the continuity of the decontamination process using supercritical carbon dioxide.
        1270.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive waste generated during the decommissioning of Kori Unit 1 can be packaged in a transport container under development and transported to a disposal facility by sea transport or land transport. In this study, the cost of each transport method was evaluated by considering the methods of land transport, sea transport, and parallel transport of the radioactive waste dismantled at Kori Unit 1. In evaluating the shipping cost, the shipping cost was evaluated by assuming the construction of a new ship without considering shipping by CHEONG JEONG NURI, which is currently carrying operational waste. Since the cargo hold of CHEONG JEONG NURI was built to fit the existing operating waste transport container and is not suitable for transporting the transport container currently under development, sea transport using CHEONG JEONG NURI was excluded in this paper. In the case of on-road transportation, the final fare for each distance was calculated in accordance with the Enforcement Decree of the Freight Vehicle Transportation Business Act, and the cost of onroad transportation was evaluated by estimating the labor cost of the input manpower required for onroad transportation. The cost of on-road transportation was estimated to be approximately KRW 510 million, the product of the total number of transports 459 times the sum of the cost of transportation vehicle freight cost of about KRW 720,000 and the labor cost of input personnel of KRW 380,000. It is difficult to predict the cost of building a new ship at this point, as the cost of building new ship is determined by the cost of number of items such as ship design specifications and material prices, labor costs, and finance costs at the time of construction. Accordingly, considering the 2% annual inflation rate based on the shipbuilding cost (about KRW 26 billion) and financing cost (about KRW 12 billion) at the time of construction of the CHEONG JEONG NURI (2005 yr.), decommissioning of Kori Unit 1 (2025 yr.) construction cost finance cost was estimated and evaluated. According to the result of comparing the transport cost for each transport scenario, land transport is about 510 million won, which is advantageous in terms of economic feasibility compared to the sea transport scenario. However, when transporting by land, it is disadvantageous in terms of acceptability of residents because it is transported multiple times on general roads. The cost of building a new ship is about KRW 56.4 billion, which is disadvantageous in terms of the cost of transporting waste from the dismantling of Kori Unit 1. But, in the future, cost reduction can be expected if waste materials issued when dismantling nuclear power plants are transported.
        1271.
        2022.05 구독 인증기관·개인회원 무료
        In domestic nuclear power plants, drums of concentrated radioactive waste solidified with paraffin that do not meet radioactive waste disposal standards are stored temporarily. In this paper, the design of a machine that separates these paraffin drums into paraffin and concentrated waste using heating vaporization and pressure difference is described. The separation process is as follows. First, the paraffin solid is indirectly heated by heating the outside of the drum. The paraffin solid is partially melted to increase the fluidity and is easily detached from the drum. The detached solid is transferred to the melting tank, and further heated in the melting tank. When the temperature is sufficiently high, paraffin is melted and becomes a mixture of liquid paraffin and concentrated waste homogeneously. The mixed solution is transferred to a paraffin recovery vessel and further heated. The vaporization point of paraffin is 370°C under atmospheric pressure, and becomes lower depending on the pressure decreasing in the vessel. The vaporization point of the paraffin is a relatively low value compared to the radioactive elements in the concentrated waste, and therefore only paraffin would be vaporized. A paraffin transfer pipe is installed on the upper part of the paraffin recovery vessel, and is connected to another tank called the paraffin capture vessel. The pressure of the paraffin capture vessel is reduced (i.e. vacuum condition), only gaseous paraffin is transferred to the paraffin capture vessel by the pressure difference. When the paraffin capture vessel is cooled below the vaporization point of the paraffin, the paraffin is liquefied or solidified, and only the paraffin is recovered. Based on the above process, the solidified paraffin could be separated into pure paraffin and concentrated waste. However, if a radioactive element with a lower vaporization point than paraffin exists in the concentrated waste, it may be mixed with paraffin and separated together. Therefore, it is necessary to measure the radioactivity or radiation dose rate for the separated paraffin, and to verify that it is sufficiently low. If necessary, additional separation process may be considered for removing radioisotopes from the paraffin.
        1272.
        2022.05 구독 인증기관·개인회원 무료
        Currently, in domestic nuclear power plants (NPP), the spent filters (SFs) used for the purpose of reducing and purifying the radiation of the primary cooling water system are temporarily stored in an untreated state. In order to dispose of SFs, radioactive nuclide analysis (RNA) of SFs is required to be conducted. As segmented gamma scanner (SGS) is already being used in Kori NPP, utilizing SGS for RNA of SFs would be practical and economical. In this paper, factors required to be considered to improve accuracy of SGSs for RNA of SFs are studied. The analysis of the nuclide inventory of the packaging drum for radioactive waste should be performed by the indirect drum nuclide analysis method. The material of the SFs is iron (SS304) on the outside, and paper on the inside. In addition, to meet disposal acceptance criteria, radioactive waste drums are packaged in thick grouting or shielding drums. Therefore, it is necessary to derive an appropriate correction method for high inhomogeneity and thick media. Considering these factors, evaluating radionuclides inventory plans to measure gamma rays in SGS mode. Correct the gamma ray measurement by examining the medium attenuation factor and error factors. In this way, the inventory of gamma nuclides is calculated, and the specific radioactivity of beta ray and alpha particle emitting nuclides other than gamma rays is planned to be calculated by applying scaling factors.
        1273.
        2022.05 구독 인증기관·개인회원 무료
        Source localization technique using acoustic emission (AE) has been widely used to track the accurate location of the damaged structure. The principle of localization is based on signal velocity and the time difference of arrival (TDOF) obtained from different signals for the specific source. However, signal velocity changes depending on the frequency domain of signals. In addition, the TDOF is dependent on the signal threshold which affects the prediction accuracy. In this study, a convolutional neural network (CNN)-based approach is used to overcome the existing problem. The concrete block corresponding to 1.3×1.3×1.3 m size is prepared according to the mixing ratio of Wolseong low-to-intermediate level radioactive waste disposal concrete materials. The source is excited using an impact hammer, and signals were acquired through eight AE sensors attached to the concrete block and a multi-channel AE measurement system. The different signals for a specific source are time-synchronized to obtain TDOF information and are transformed into a time-frequency domain using continuous wavelet transform (CWT) for consideration of various frequencies. The developed CNN model is compared with the conventional TDOF-based method using the testing dataset. The result suggests that the CNN-based method can contribute to the improvement of localization performance.
        1274.
        2022.05 구독 인증기관·개인회원 무료
        Low and intermediate radioactive wastes in South Korea have been disposed in Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju. This repository structure is planned to be operated few hundred years while toxicity of the waste is sufficiently decayed. The structural integrity of the repository is required to protect the waste in safe. The integrity of the structure is commonly estimated using acoustic emission (AE) method. The integrity of the structure using AE is obtained by following process: 1) Estimation of maximum acoustic crack energy of the structure, 2) Acoustic signal measurement and filtering, and 3) Measurement of simultaneous acoustic cracking energy. The damage of the structure can be obtained from cumulative cracking energy from the structure divided by the predicted maximum cracking energy of the structure. Estimation of maximum cracking energy is gained by the specimens whose components are identical to the repository structure. The cracking energy of the different specimens are obtained during uniaxial compressive test and volume of the specimen is calculated. Then, the fractal coefficient for the structure is obtained and the maximum crack energy of the target structure can be calculated. The specimens whose diameters vary from 50 mm to 150 mm and heights are twice of the diameter are made with same recipe of WLDC silo concrete. The uniaxial compression test is conducted with loading rate of 0.1 mm·min−1. The fractal coefficient is obtained by least square method from the volume-cumulative energy relationship.
        1275.
        2022.05 구독 인증기관·개인회원 무료
        The chelating agent and cellulose generated during the operating and decommissioning of a NPP’s form organic complexing compounds. That is accelerate the migration of radionuclide and have a bad influence of LILW disposal site. In this study, the GoldSim (RT module) program was used for the effects of radionuclide migration by organic complex compounds as described above. A scenario was derived for evaluation, and a conceptual design (Concept Art) of the GoldSim model was performed. 1) Derivation of the scenario. For the scenario, we selected a groundwater flow scenario in which groundwater flows in and radionuclides flow out after a lapse of time after the operation of the LILW disposal site in Gyeongju is closed. The inflowing groundwater comes into contact with radioactive waste and the radionuclides dissolve. The dissolved nuclides move past the drum and out of the disposal vessel due to the advection phenomenon. Radionuclides spilled from the disposal vessel pass through the silo internal filler (crushed stone) and reach the engineering barrier concrete. Radionuclides from degraded concrete are scenarios that move along the flow of groundwater to the near and far. 2) Radionuclide migration concept design. The radionuclide movement section was largely designed with Inner (Inside the silo), Near and Far. (A) Inner (Inside the silo) This section is where radionuclides move from the radiation source to the engineering barrier (silo). The detailed migration path was designed to allow radioactive nuclides to flow out and move to waste drums, solidified matrix of indrum, disposal vessel fillers, disposal vessels, silo fillers (crushed stones), and engineered barriers (concrete). The LILW disposal site in Gyeongju has a total of 6 silos. Each of the 6 silos was modeled and designed in consideration of the structural information and positional impact. (B) Near & Far. In generally design, the near is form source term to engineered barrier and far is beyond the engineered barrier. In this study, the near and far designed by radionuclide in the section from the beyond the engineering barrier (silo) to the sea through the groundwater flow through the natural rock. Especially in the case of near, the design was made by applying the position of the natural rock sampling drill hole.
        1276.
        2022.05 구독 인증기관·개인회원 무료
        Safety for the radioactive waste disposed of in the disposal facility should be secured through safety assessment in consideration of the various situations. In this study, the influence and correlation of EDTA and ISA, which are the factors that can impede the safety of the disposal facility, were analyzed using the PHREEQC computational code. Thermodynamic database (TDB) of Andra, specific ion interaction theory (SIT) model as ionic strength correction model, radionuclides (Ni, Am, Pu) were adopted to perform the calculation on the distribution of chemical species by pH. According to the results, EDTA dominated the system and the effect of ISA is relatively small for the distribution of the chemical species of divalent and trivalent cations in neutral and weak base conditions. In the case of the tetravalent cations, the effect of ISA increased compared to the previous case especially in the strong base conditions. In conclusion, EDTA has a more significant effect on the system than ISA under the environment of the domestic disposal facility. Furthermore, when EDTA and ISA are present simultaneously in the system, the effects of two materials are inversely proportional and this characteristic should be considered during the safety assessment.
        1277.
        2022.05 구독 인증기관·개인회원 무료
        In a recent preliminary inspection for disposal, the glass fiber waste (GFW), used as a pipe insulation, was judged as “pending evaluation” because some dust was found in drum opening tests. Therefore, additional inspection is required to ensure that the package corresponds with the acceptance criteria of the particulates. The dust was generated presumably due to GFW being used in a high-temperature environment for a long time, thus being easily degraded and crushed. For this reason, safety issues that may occur in the process of handling, transportation, and disposal are emerging. Therefore, in this study, a preliminary safety assessment of GFW disposal was performed, the exposure dose to the general public was derived, and compared with the dose limit. The evaluation was carried out in the following order: (1) evaluation of GFW radiation source term, (2) selection of accident scenario, (3) calculation of exposure dose, (4) comparison of evaluation results with dose limits, and confirmation of satisfaction. The average radioactivity of the GFW to be disposed of was used as the source term, and the main nuclides were identified as H-3, Fe-55, Co-60, Ni-63, and Pu-241. In general, the types of accidents that can occur at disposal facilities can be classified into falls, fires, collisions during transportation, off-site accidents, and nuclear criticality, and the accident scenarios are selected by analyzing and reviewing the probability of each accident. In this study, the accident analysis and scenarios presented in the safety assessment of the KORAD were reviewed, and the fire in the treatment facility, the fire in the storage facility, and the collision of the transport vehicle were selected as the evaluation scenarios. When an accident occurs, the radioactive material inside the container leaks out and diffuses into the atmosphere. In this evaluation, the internal and external exposure of the general public due to radioactive plume at the site boundary was evaluated and the dose conversion factors from ICRP-72 and FGR 12 were used. Based on the evaluation, general public was exposed to 0.004 mSv, 0.013 mSv, and 0.045 mSv, respectively, due to a fire at a treatment facility, at a storage facility, and in a transport vehicle. Most of the dose is due to internal exposure by Pu-241 nuclide, because the proportion of it in the waste is high, and when inhaled, the internal dose is high by emitting beta rays. It was confirmed that the result of dose was 0.4%, 1.3% and 4.5% of the annual dose limit, sufficiently satisfying the dose limit and safety.
        1278.
        2022.05 구독 인증기관·개인회원 무료
        Low to intermediate radioactive waste disposal concrete structures are subjected to coupled hydromechanical conditions and the identification of structural damage is crucial to ensure safe long-term disposal. Different damage models for concrete and the surrounding rock can affect the damage characteristics of radioactive waste disposal structures. In this study, the effects of different rock damage models are applied to the hydro-mechanical-damage coupled structural analysis of the Wolseong Low and Intermediate Level Radioactive Waste Disposal Center silo. A two-dimensional model of the disposal silo was modeled using the finite element analysis software COMSOL and the Mazars’ damage model was applied to the silo concrete. The Mazars’ model parameters were obtained from uniaxial compression and tensile tests on cylindrical concrete specimens after 28 days of water curing and further 32 days of wet curing at 75°C). The COMSOL embedded Richards equation module was used to simulate hydraulic analysis. Structural loading due to waste disposal was applied at the bottom of the silo structure and the damage evolution characteristics were investigated. The non-linear mechanical rock behavior obtained from laboratory tests (Hoek-Brown criterion, resonant column test, Mazar’s damage model) and field tests (Goodman Jack) were input to assess the effects of different rock damage models. The results highlight the importance of structural damage consideration when assessing the long-term stability and safety of underground radioactive waste disposal structures under coupled hydro-mechanical conditions.
        1279.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Thus, evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, safety assessments conducted in Sweden and UK are studied, and the factors required to be considered for appropriate safety assessment of cellulose is analyzed. SKB (Sweden) conducted safety assessment of cellulose degradation as a part of long-term safety assessment of SFR. SKB determined that ISA would impact sorption of trivalent and tetravalent radionuclides (Eu, Am, Th, Np, Pa, Pu, U, Tc, Zr and Nb) at concentration higher than 10−4–10−3 M, and impact sorption of divalent radionuclides (Ni, Co, Fe, Be and Pb) at concentration higher than 10−2 M. Then, SKB conservatively set the upper limit of ISA concentration to be 10−4 M and conducted cellulose degradation evaluation on each waste package type, considering the expected disposal environment of SFR. Based on the calculated results, some of the waste packages showed concentration of ISA to be higher than 10−4 M, so SKB conservatively developed waste acceptance criteria to prevent ISA being produced to an extent of affecting the safety of the repository. SKB conducted safety assessment only for the repositories with pH above 12.5 and excluded 1BLA from the safety assessment as the expected pH of 1BLA is around 12, which is insufficient for cellulose to degrade. However, SKB set disposal limit for 1BLA as well, to minimize potential impact in future. Serco (UK) conducted safety assessment of cellulose degradation for the conceptual repository, which is a concrete vault with cementitious backfill. Serco estimated that the pH of repository would maintain around 12.4. Serco conservatively assumed that the pH would be sufficient for cellulose degradation to occur partially, and suggested application of appropriate degradation ratio for safety assessment of cellulose degradation. To conduct appropriate safety assessment of cellulose degradation, an appropriate ISA concentration limit based on radionuclide inventory list, and an appropriate cellulose degradation ratio based on the pH of disposal environment should be determined. As for guidance, below pH 12.5, cellulose degradation is not expected, and between pH 12.5–13, partial cellulose degradation is expected. In future, this study could be used as fundamental data to evaluate safety of the repository.
        1280.
        2022.05 구독 인증기관·개인회원 무료
        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.