심부 및 천부 지질 환경을 갖는 지하 모암 내의 방사성 폐기물 처분장으로부터 유출된 핵종은 다양한 인공 및 지하 매질을 거쳐 궁극적으로 인간 생태환경으로 도달하게 된다. 그 결과로 인간에게 주는 피폭선량률을 정량적으로 계산하는 것은 처분안전성 평가의 최종 단계가 된다. 방사성폐기물에 포함된 핵종에 대해 붕괴사슬을 고려하고 방사성폐기물처분 시스템의 주요한 부분을 이루는 생태계를 구획으로 모델링 한 후 이들 구획간의 핵종이동에 대한 전이계수를 적용하여 동적 구획모델을 기반으로 하는 AMBER를 이용한 케이스화일로서 ACBIO템플릿을 개발하고 이를 이용하여 각 핵종별 선량환산인자를 평가해 보았다.
The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of nutrients and net uptake(or regeneration) rate of nutrients in Kamak Bay for scenario analysis to find proper management plan. The estimation results of the physical process in terms of nutrients showed that transportation of nutrients is dominant in surface level while accumulation of nutrients is dominant in bottom level. In the case of dissolved inorganic nitrogen, the results showed that the net uptake rate was 0~60 mg/m2/day in surface level(0~3m), and the net regeneration rate was 0.0~10.0 mg/m2/day in middle level(3~6m) and above 10 mg/m2/day in bottom level(6m~below). In the case of dissolved inorganic phosphorus, the net uptake rate was 0.0~3.0 mg/m2/day in surface level, and the net regeneration rate was 0.5~1.5 mg/m2/day in middle level and 1.0~3.0 mg/m2/day in bottom level. These results indicates that net uptake and transport of nutrients are occurred predominantly at the surface level and the net generation and accumulation are dominant at bottom level. Therefore, it is important to consider the re-supplement of nutrients due to regeneration of bottom water.
Jindong bay at the northwestern part of Jinhae bay suffers from the occurrence of red tides in summer every year. In order to study the management methods of coastal environments, an ecological numerical model has been developed. The model experiments was forecasted that the load of nutrients from the land and field concentration will be cut down per 10% each.
When we cut down 57.2% nitrogen load in the inner bay and 38.4% phosphorous load in the outer bay of bottom layer of the nutrients load from land and field concentration, the seawater quality standard levels up first grade. When we cut down 86.5% nutrients in the inner bay and 93.0% nutrients in the outer bay, the concentration of chlorophyll a decreases below 3.2(an individual concentration of phytoplankton : 10,000cell/ml), i.e. the red tides do not occur.
From the environmental aspects, primary productivity of phytoplankton plays the most important role in enhancement of marine culture oyster production. This study may be divided into two branches; one is estimation of maximum oyster meat production per unit facility(Carrying Capacity) under the present environmental conditions in Kamak Bay, the other is improvement of carrying capacity from increase of primary productivity by changing the environmental conditions that cause not to form an unfavorable environment such as the formation of oxygen deficient water mass using the eco-hydrodynamic model. By simulation of three-dimensional hydrodynamic model and ecosystem model, the comparison between observed and computed data showed good agreement. The results of sensitivity analysis showed that phytoplankton maximum growth rate was the most important parameter for phytoplankton and dissolved oxygen. The estimation of mean primary productivity of Wonpo, Kamak, Pyongsa, and Kunnae culture grounds in Kamak Bay during culturing period were 3.73gC/㎡/d, 2.12gC/㎡/d, 1.98gC/㎡/d, and 1.26gC/㎡/d, respectively. Under condition not to form the oxygen deficient water mass, four times increasing of pollutants loading as much as the present loading from river increased mean primary productivity of whole culture grounds to 4.02gC/㎡/d. Sediment N, P fluxes that allowed for 35% increasing from the present conditions increased mean primary productivity of whole culture grounds to 3.65gC/㎡/d. Finally, ten times increasing of boundary loadings from the present conditions increased mean primary productivity of whole culture grounds to 3.95gC/㎡/d. The maximum oyster meat production per year and that of unit facility in actual oyster culture grounds under the present conditions were 6,929ton and 0.93ton, respectively. This 0.93ton/unit facility is considered to be the carrying capacity in study area, and if the primary productivity is increased by changing the environmental conditions, oyster production can be increased.
A three-dimensional ecosystem model is applied to the Suyoung Bay, located at the southeastern part of Korea, to study of the material distribution in the time scale of several tens days. The model has included of the DIN(Dissolved Inorganic Nitrogen), DIP(Dissolved Inorganic Phosphate), phytoplankton, zooplankton and detritus, and also was coupled with the physical processes. The spatial distribution of chlorophyll-a and primary productivity in the model is determined by the physical and chemical-biological parameters. The horizontal distributions of the DIN, DIP and chlorophyll-a are decreased from the coast to the off-shore, though the nutrients show some more complicated pattern than the chlorophyll-a. The nutrient contents in the off shore are low, and thus a relatively low productivity(chlorophyll-a) are presented. On the whole, the distribution of the results of model are smoother than the observed ones and some small scale variation in the observed data cannot be reproduced by the model due to the resolution limits of model. However, the basic pattern and the quantitavities has been reproduced by the model well.
Masan bay is one of the polluted enclosed bays, which has red tides problem and the formation of oxygen deficient water in the bottom layer. Most important factors that cause eutrophication and red tide is nutrient materials containing nitrogen and phosphorus which stem from terrestrial sources and nutrients released from sediment. Therefore, to improve of water quality, reduction of these nutrient loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and eutrophication model, which were developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the phytoplankton production and also to evaluate the effect of water quality improvement plans on phytoplankton production. in field survey, the range of concentrations of chlorophyll -a at surface area was found to be 29.17 - 212.5㎎/㎥, which were exceeding eutrophication criteria. The constant currents defined by integrating the simulated tidal currents over 1 tidal cycle showed the counterclockwise eddies in the southern part of Budo. The general directions of constant currents were found to be southward at surface and northward at bottom over all the bay. The eutrophicatior model was calibrated with the data surveyed in the field of the study area in June, 1993 The calculated results are in fairly good agreement with the observed values within relative error of 30%. The pollutantI load from the sources such as the input from terrestrial sources and release from the sediment was reduced by the rate of 50, 70, 90, 98% to evaluate the effect of phytoplankeon production. Phytoplankton production was reduced to 50% in case of the 90% reduction of the input loads from terrestrial sources and 8% in case of the 90% reduction of the load from sediment.