검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 76

        1.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to prepare kombucha, a fermented tea beverage, containing Dendropanax morbiferus (DM) leaves and roots, and analyze its antioxidant and intracellular activities. We compared the pH change, total acidity, radical scavenging activity, and oxygen radical absorbance capacity (ORAC) of kombucha fermented with black tea alone and that with added DM leaves or roots during fermentation. Using RAW 264.7, we evaluated the effects of kombucha containing different DM parts on nitric oxide (NO) production and inflammation-related cytokine content in cells. Kombucha containing ethanol extracts of DM leaves (BTK-E-DML) and roots (BTK-E-DMR) showed higher radical scavenging activity and ORAC 3 d after fermentation than that prepared from black tea alone (BTK-Ori). In an in vitro experiment using RAW 264.7, samples were treated with 8 mg/mL kombucha considering cytotoxicity; the lipopolysaccharide (LPS)-induced NO content significantly reduced after BTK-E-DML and BTK-EDMR treatments compared with that after BTK-Ori treatment. Additionally, the levels of interleukin-6 and tumor necrosis factor-alpha, which were LPS-stimulated inflammatory cytokines, significantly decreased in cells treated with BTK-E-DML and BTK-E-DMR 15 d after fermentation compared with those treated with BTK-Ori. In conclusion, these results demonstrate that kombucha fermented with the leaves and roots of DM increases antioxidant activity and can significantly regulate inflammatory responses at the cellular level.
        4,000원
        11.
        2022.10 구독 인증기관·개인회원 무료
        Deep geological disposal is generally accepted to be the most practical approach to handling radioactive wastes. Bentonite has been considered as a buffer material in deep geological disposal repositories (DGR) for high-level radioactive wastes. Evaluating the effect of short-term bentonite alteration on EBS performance has limitations in safety assessment over thousands of years. Information on bentonite characteristics under various conditions obtained from natural systems can be used to evaluate long-term safety of bentonite buffer. The purpose of this study was to investigate mineralogical and physicochemical characteristics of bentonite in the Naah mine located in Yangnam-myeon, Gyeongju-si for a natural analogue of the bentonite barrier in DGR. A total of 15 samples were collected at regular intervals from the bentonite layer and andesitic lapilli tuff (i.e., parent rock) at the boundary with the bentonite layer. The bentonite layer is located at a depth of about 1 m below the ground surface. Each sample was separated into particles < < 75 μm and particles < 2 μm through grinding and sedimentation processes. The separated subsamples were characterized mineralogically and physiochemically using various analytic techniques. Bentonite samples have a similar SiO2/Al2O3 ratio to the parent rock and a lower (Na+K)/Si ratio than the parent rock, indicating depletion of alkali components during bentonitization. The parent rock and bentonite samples have similar mineral composition (i.e., quartz, feldspars, opal-cristobalite-tridymite and montmorillonite). Results of XRD analysis on the randomly distributed particles < 2 μm indicate that bentonite is mostly composed of Ca-montmorillonite, which is a typical dioctahedral smectite. Results of FTIR and VNIR analysis indicate that montmorillonite contained in bentonite is Al-dioctahedral montmorillonite, and Al is substituted with Mg in some octahedron units. The mineralogical and physicochemical characteristics are similar regardless of sampling location. These results suggest that bentonite potentially exposed to weathering, located near the ground surface, has hardly altered.
        1 2 3 4