검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 381

        241.
        2005.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.
        3,000원
        249.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sixteen clinically healthy New Zealand white rabbits of either sex were divided into two equal groups I and II of 8 animals each. Under thiopental sodium (2.5%) anaesthesia a linear full thickness abdominal wall defect of 3 cm in length was created and repaired with continuous suture pattern using 3000 filaments of carbon fibres and 1~0 black braided nylon suture, ingroup I and II respectively. Increased vascularity was observed in carbon fibres (group I) and on day 30 the carbon fibres were covered by white fibrous tissue. Significantly higher (P < 0.05) values of glucose was seen on day 14 in group I, whereas, decrease in glucose value was observed in group II. Histopathologically, the carbon fiber implant induced extensive fibrous tissue (collagen fiber) reaction. Negligible inflammatory cells in the stroma indicate the host tissue tolerance to carbon fibers. Histochemically, gradually increased alkaline phosphatase activity up to day 14 in group I, suggested the proliferation of fibroblasts in early stages.
        4,000원
        250.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The gas response to a proposed spiral stellar pattern for our Galaxy is presented here as calculated via 2D hydrodynamic calculations utilizing the ZEUS code in the disk plane. The locus is that found by Drimmel (2000) from emission profiles in the K band and at 240 μm. The self-consistency of the stellar spiral pattern was studied in previous work (see Martos et al. 2004). It is a sensitive function of the pattern rotation speed, Ωp, among other parameters which include the mass in the spiral and its pitch angle. Here we further discuss the complex gaseous response found there for plausible values of Ωp in our Galaxy, and argue that its value must be close to 20 km s-l kpc-1 from the strong self-consistency criterion and other recent, independent studies which depend on such parameter. However, other values of Ωp that have been used in the literature are explored to study the gas response to the stellar (K band) 2-armed pattern. For our best fit values, the gaseous response to the 2-armed pattern displayed in the K band is a four-armed pattern with complex features in the interarm regions. This response resembles the optical arms observed in the Milky Way and other galaxies with the smooth underlying two-armed pattern of the old stellar disk populations in our interpretation. The complex gaseous response appears to be related to resonances in stellar orbits. Among them, the 4:1 resonance is paramount for the axisymmetric Galactic model employed, and the set of parameters explored. In the regime seemingly proper to our Galaxy, the spiral forcing appears to be marginally strong in the sense that the 4:1 resonance terminates the stellar pattern, despite its relatively low amplitude. In current work underway, the response for low values of Ωp tends to remove most of the rich structure found for the optimal self-consistent model and the gaseous pattern is ring-like. For higher values than the optimal, more features and a multi-arm structure appears.
        4,000원
        257.
        2002.10 구독 인증기관 무료, 개인회원 유료
        Presented in this paper is an algorithm to compute the Voronoi diagram of a circle set from the Voronoi diagram of a point set. The circles are located in Euclidean plane, the radii of the circles are non-negative and not necessarily equal, and the circles are allowed to intersect each other. The idea of the algorithm is to use the topology of the point set Voronoi diagram as a seed so that the correct topology of the circle set Voronoi diagram can be obtained through a number of edge flipping operations. Then, the geometries of the Voronoi edges of the circle set Voronoi diagram are computed. The main advantages of the proposed algorithm are in its robustness, speed, and the simplicity in its concept as well as implementation.
        4,000원