검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 59

        21.
        2022.10 구독 인증기관·개인회원 무료
        The liquid radioactive waste system of nuclear power plants treats radioactive contaminated wastes generated during the Anticipated Operational Occurrence (AOO) and normal operation using filters, ion exchange resins, centrifuges, etc. When the contaminated waste liquid is transferred to an ion exchanger filled with cation exchange resin and anion exchange resin, nuclides such as Co and Cs are removed and purified. The lifespan and replacement time of the ion exchange resin are determined by performing a performance test on the sample collected from the rear end of the ion exchanger, and waste ion exchange resin is periodically generated in nuclear power plants. In the general industry, most waste resins at the end of their lifespan are incinerated in accordance with related laws, but waste resins generated from nuclear power plants are disposed of by clearance or stored in a HIC (High Integrity Container). Plasma torch melting technology can reduce the volume of waste by using high-temperature heat (about 1,600 degrees) generated from the torch due to an electric arc phenomenon such as lightning, and secure stability suitable for disposal. Plasma torch melting technology will be used to check thermal decomposition, melting, exhaust gas characteristics, and volume reduction at high temperatures, and to ensure disposal safety. Through this research, it is expected that the stable treatment and disposal of waste resins generated from nuclear power plants will be possible.
        22.
        2022.05 구독 인증기관·개인회원 무료
        Currently, dismantling technology for decommissioning nuclear power plants is being developed around the world. This study describes the cutting technology and one of the technologies being considered for the RV/RVI cutting of Kori Unit 1. The dismantling technology for nuclear power plants include mechanical and thermal methods. Mechanical cutting methods include milling, drill saw, and wire cutting. The advantages of the mechanical method are less generating aerosol and less performance degradation in water. However, the cutting speed is slow and the reaction force is large. Thermal cutting methods use heat sources such as plasma arcs, oxygen, and lasers. The advantages of thermal method are fast cutting speed, low reaction force and thick material cutting. On the other hand, they have problems with fume and melt. Among them, the cutability of the oxygen cutting method is better in carbon steel than in stainless steel. In order to cut the RV/RVI of the Kori Unit 1, the applicability of fine plasma, arc saw, and band/ wheel saw is being reviewed. For RV cutting, the applicability of arc saw and oxy-propane is being considered Because RV is mostly made of carbon steel. However, since the flange is cladded with stainless steel, the use of mechanical methods such as wire saws should be considered. In the case of RVI, since it has a complicated shape and is made of stainless steel, it seems necessary to review various cutting methods. In addition, it will be necessary to minimize radiation exposure of workers by cutting underwater cutting.
        23.
        2022.05 구독 인증기관·개인회원 무료
        Many countries are developing various mechanical cutting technologies to dismantle nuclear facility. However, most of mechanical cutting technologies have a problem like the degradation of tool life due to the Hard-Machining materials. To solve this problem, lab-scale test was performed with a Plasma Assisted Machining (PAM) technology and 25 mm of thickness Inconel 600 plate. Commonly, the strength of metals decreases by exposure at high temperature. And, previous study reported that strength of Inconel 600 is degraded above 500°C. This softening effect was applied to Inconel 600 cutting test. The optimal conditions such as the plasma torch power and the feed rate were determined by this study. As a result, the surface temperature of Inconel 600 was reached up to 500°C under the conditions which is 8.4 kW of plasma torch power and 150–250 mm·min−1 of feed rate. And it was confirmed that the tool life was improved under the conditions. In order to apply PAM for various Hard- Machining materials, it is necessary to investigate the softening temperature of Hard-Machining materials, the plasma torch power and feed rate.
        24.
        2022.05 구독 인증기관·개인회원 무료
        Various cutting technologies are being developed for dismantling nuclear power plants. these technologies are including mechanical and thermal methods. For example, mechanical cutting methods include sawing, drilling and milling. But, due to the strength of material, mechanical cutting methods have limits of cutting depth and tool life. Therefore, this milling machine assisted plasma torch was developed to improve the limits. And this machine has the principle of softening effect caused by the high temperature. In this work, this developed device was evaluated in view of the cutting depth and tool life in cutting process. For this process, a plasma torch was attached to the front of the endmill processing path to heat the Inconel 600. As results, compare to conventional milling, when the plasma torch power is 6.4 kW, the cutting depth was increased by 4 mm at condition (feed rate is 100 mm·min−1, tool diameter is 10 mm, rotating speed is 1,000 rpm). And cutting length increase 2 times from 300 mm to 600 mm at 16 mm of tool diameter.
        25.
        2022.05 구독 인증기관·개인회원 무료
        After the Fukushima accident in 2011, a huge amount of radioactively contaminated water is being generated by cooling the melted fuel of units 1, 2 and 3. Most of contaminated water is seawater and underwater containing not only salt elements but also nuclear fission products with radioactivity. To treat the contaminated water, Cs/Sr removal facilities such as KURION and SARRY are being operated by TEPCO. Additionally, three ALPS facilities are on operation to meet the regularity standards for discharge to the sea. However, massive secondary wastes such as Zeolite, sludge and adsorbent is being generated by these facilities for liquid water treatment. The secondary wastes containing various radionuclide with Cs and Sr is difficult to store due to highly radioactive concentration and corrosive properties. In Japan, a variety of technologies such as GeoMelt vitrification, In-Can vitrification and CCIM vitrification is considered as a promising solution. In this study, they were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for thermal treatment of sludge radwaste.
        26.
        2022.05 구독 인증기관·개인회원 무료
        In KHNP CRI, the 100 kW PTM (plasma torch melting) system was designed for the treatment and disposal technology of various radioactive wastes including the metal, concrete, liquid waste and insulator. The facility consists of melting chamber, thermal decomposition chamber, waste feeding system and off-gas treatment system. In this study, to evaluate the applicability of the PTM system, demonstration test was conducted using the radiation hazmat suit as combustible waste. The plasma melting chamber is pre-heated by 2nd combustion device and plasma torch for 5 hours. The temperature inside the plasma melting chamber is approximately 1,600°C. The combustible waste was put into the melting chamber by the pusher feeding device with the throughput of maximum 50 kg/hour. During the test, the power of plasma torch is 60–96 kW on the transferred mod. It was evaluated in terms of long-term integrity of PTM system on operation according to the waste throughput ratio.
        27.
        2022.05 구독 인증기관·개인회원 무료
        Plasma melting technology has been considered as promising technology for treatment of radioactive wastes. According to the IAEA TECDOC-1527 report (2006), the technology has an advantage that it can treat regardless of waste types which is both combustible and non-combustible wastes. In particular, it is expected that a large amount of concrete, a representative non-combustible wastes, will be generated during the operation and dismantling of nuclear power plants. In order to treat the concrete waste in plasma torch melting system, various factors could be considered like the slag of electric conductivity, viscosity and melting temperature. Above all, as a critical factor, the viscosity of the melt is very important to easily discharge the melt. The viscosity of slag (SiO2-CaO-Al2O3 system) can be lowered by adding a basic oxide such as CaO, Na2O, MgO and MnO. The basic oxides are donors of oxygen ions. These oxides are called notwork breakers, because they destroy the network of SiO2 by reacting with it. In this study, the slag composition of the concrete waste was developed to apply the plasma torch melting. Also, demonstration test was performed with the developed slag composition and 100 kW plasma torch melting system.
        28.
        2022.05 구독 인증기관·개인회원 무료
        Currently, KHNP has 24 operating nuclear power plant units with a toal combined capacity of about 23 GWe and two units are under construction. However, permanent stop of Kori unit 1 nuclear power plant was decided in 2017. Accordingly, interest in how to dispose of waste stored inside a permanently stopped nuclear power plant and waste generated as decommissioning process is increasing. KHNP CRI is conducting research on the advancement of plasma torch melting facilities for waste treatment generated during the plant decommissioning and operation period. Plasma torch melting facility is composed of various equipment such as a melting furnace (Melting chamber, Pyrolsis chamber), a torch, an exhaust system facility, a waste supply device, and other equipment. In demonstration test, concrete waste was put in a 200 L drum to check whether it can be pyrolyzed using a plasma torch melting facility. Reproducibility for waste treatment in the form of a 200 L drum and discharge of molten slag could be confirmed, the amount of concrete waste in 200 L Drum that could be treated according to power of plasma torch was confirmed. This demonstration test confirmed the field applicability and stability of plasma torch melting facility, and improved expectations for long-term operation.
        29.
        2022.05 구독 인증기관·개인회원 무료
        In nuclear power plants, insulation is used to protect equipment and block heat. Insulation materials include asbestos, glass fiber, calcium silicate, etc. Various types and materials are used. This study aims to ensure volume reduction and disposal safety by applying plasma torch melting technology to insulation generated at operating and dismantling nuclear power plants. After the evaluation of characteristics by securing thermal insulation materials or similar materials in use at the operational and dismantling nuclear power plant. It is planned to perform pyrolysis and melting tests using the MW plasma torch melting facility owned by KHNP CRI Before the plasma test, check the thermal decomposition and melting characteristics (fluidity, etc.) of the insulation in a 1,600°C high-temperature furnace. The insulation is stored in a 200 L drum and injected into a plasma facility, and the drum and the insulation are to be pyrolyzed and melted by the high temperature inside the plasma torch melting furnace. Through this test, thermal decomposition and melting of the insulation, solidification/ stabilization method, maximum throughput, and exhaust characteristics are confirmed at a high temperature (1,600°C) of the plasma torch. Through this study, it is expected that the stable treatment and disposal of insulation generated from operating and dismantling nuclear power plants will be possible.
        30.
        2022.05 구독 인증기관·개인회원 무료
        Plasma torch melting technology can pyrolyze and melt waste with high-temperature heat (about 1,600°C) using electric arc phenomena such as lightning. Waste that may be treated in a plasma torch melting facility is injected in solid (combustible, non-combustible) and liquid form depending on facility capacity. The 200 L drum type, screw supply type, and nozzle type liquid injection device are applied to MW plasma facilities, and the push rod type and screw supply type are applied to smallcapacity plasma facilities. In consideration of the characteristics of radioactive waste generated from operating and dismantling nuclear power plants, a waste input device suitable for plasma torch facilities was developed and verified through tests. In the future, facility soundness will be confirmed through long-term performance tests, and stability will be secured through continuous improvement.
        1 2 3