검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6,930

        539.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the effect of the catalyst and metal–support interaction on the methane decomposition behavior and physical properties of the produced carbon, catalytic decomposition of methane (CDM) was studied using Ni/SiO2 catalysts with different metal–support interactions (synthesized based on the presence or absence of urea). During catalyst synthesis, the addition of urea led to uniform and stable precipitation of the Ni metal precursor on the SiO2 support to produce Ni-phyllosilicates that enhanced the metal–support interaction. The resulting catalyst upon reduction showed the formation of uniform Ni0 particles (< 10 nm) that were smaller than those of a catalyst prepared using a conventional impregnation method (~ 80 nm). The growth mechanisms of methane-decomposition-derived carbon nanotubes was base growth or tip growth according to the metal–support interaction of the catalysts synthesized with and without urea, respectively. As a result, the catalyst with Ni-phyllosilicates resulting from the addition of urea induced highly dispersed and strongly interacting Ni0 active sites and produced carbon nanotubes with a small and uniform diameter via the base-growth mechanism. Considering the results, such a Ni-phyllosilicate-based catalyst are expected to be suitable for industrial base grown carbon nanotube production and application since as-synthesized carbon nanotubes can be easily harvested and the catalyst can be regenerated without being consumed during carbon nanotube extraction process.
        4,300원
        540.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanodots (CNDs) are 0D quasi-spherical nanoparticles that are less than 10 nm in size. CNDs that possess surface functional groups such as hydroxyl, amino, and carboxyl groups have been demonstrated to scavenge free radicals efficiently and effectively, resulting in them being beneficial for cosmetic and cosmeceutical applications. In this study, we successfully prepared novel CNDs, namely black VC, using vitamin C (VC) as a promising precursor. Black VC was prepared by a facile one-step method based on short-time microwave irradiation. The properties of black VC were characterized by transmission electron microscopy (TEM) analysis, X-ray diffraction (XRD), high-resolution X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and UV–vis spectrophotometry. Radical scavenging, cell viability, and anti-pollution activity assays were also conducted to demonstrate the functionalities of black VC. The developed black VC exhibited lower cytotoxicity and better antioxidant, metal chelating ability, and anti-pollution activities than its precursor. These results provide a new approach for developing advanced antioxidants for innovative cosmetic formulations using a simple microwave treatment method. However, black VC retained some problems of its precursor in the form of low stability, which is likely to be a challenge for its cosmeceutical application.
        4,300원