검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 893

        42.
        2023.05 구독 인증기관·개인회원 무료
        In the event of a radioactive release, it is essential to quickly detect and locate the source of the release, as well as track the movement of the plume to assess the potential impact on public health and safety. Fixed monitoring posts are limited in their ability to provide a complete picture of the radiation distribution, and the information they provide may not be available in real-time. This is why other types of monitoring systems, such as mobile monitoring, aerial monitoring, and personal dosimeters, are also used in emergency situations to complement the information provided by fixed monitoring posts. Also, the monitoring system can be improved by using the Kriging technique, which is one of the interpolation methods, to predict the radiation dose in the relevant districts. This can be achieved by utilizing both the GPS information and the radiation dose measured at a particular point. The Kriging method involves estimating the value between different measurement points by considering the distance between them. The model used GPS and radiation data that were measured around the Hanbit NPP. The data were collected using a radiation measuring detector on a bus that traveled around the NPP area at 2-second intervals for one day. From the collected data, 200 data points were randomly selected for analysis, excluding the data measured at the bus garage out of a total of 16,550 data points. The average dose of the daily measurement data was 117.94 nSv/h, and the average dose of the 200 randomly extracted data was 119.17 nSv/h. The GPS and radiation dose data were utilized to predict the radiation dose around the Yeonggwang area where the Hanbit NPP is located. In the event of an abnormal release of radioactive material, it can be difficult to accurately determine the dose unless a monitoring measurement point is present. This can delay the rapid evacuation of residents during an emergency situation. By utilizing the Kriging model to make predictions, it is anticipated that more accurate dose predictions can be generated, particularly during accident scenarios. This can aid in the development of appropriate resident protection measures.
        43.
        2023.05 구독 인증기관·개인회원 무료
        The global nuclear nonproliferation regime has developed over the past 50 years based on the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) with three pillars: disarmament, nonproliferation and peaceful use of nuclear energy. Due to climate change and energy security in recent years, nuclear energy has been in the spotlight as an electricity generation source, and many countries are paying attention to introducing nuclear power plants (NPP). Whereas exporters pursue profit by selling their NPP, international organisations and member states that seek nuclear nonproliferation are concerned with potential proliferation risks by expanding the nuclear power industry worldwide. Simultaneously, the member states’ right to peaceful use of nuclear energy has to be guaranteed as specified in NPT Article IV. Accordingly, the trade of nuclear power between the member states taking full responsibility is desirable from the nonproliferation perspective. This paper investigates whether the countries capable of exporting their nuclear power have complied with the global nuclear nonproliferation regime, deriving the role and position that South Korea is faced with, accordingly, has to take. The dynamics of exporters’ competitiveness are discussed, emphasising that compliance with the regime must be considered a qualification when exporting NPP. The achievement that South Korea has attained, fulfilling its role and responsibility under the regime, is highlighted. Since South Korea has developed the nuclear power industry in cooperation with the United States under the NPT and the ROK-US Agreement for Peaceful Nuclear Cooperation, the status quo of the two countries in the nuclear nonproliferation and industrial landscape is discussed. Among the newcomers who have officially announced the plan to introduce NPP, Saudi Arabia is put in a crucial position to aggregate or alleviate nuclear nonproliferation. To this end, the rationale for the ROK-US cooperation is proposed, evaluating the value of nuclear nonproliferation in support of exporting nuclear power.
        58.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0–64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.
        5,100원
        59.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The International Atomic Energy Agency (IAEA) entails independent decision-making for the safety supervision of civil nuclear facilities. To evaluate and review the safety of nuclear facilities, the national regulatory body usually consults independent institutions or external committees. Technical Support Organizations (TSOs) include national laboratories, research institutions, and consulting organizations. Support from professional organizations in other countries may also be required occasionally. Most of the world’s major nuclear power countries adopt an independent nuclear safety supervision model. Accordingly, China has continuously improved upon the construction of such a system by establishing the National Nuclear Safety Administration (NNSA) as the decision-making department for nuclear and radiation safety supervision, six regional safety supervision stations, the Nuclear and Radiation Safety Center (NSC), a nuclear safety expert committee, and the National Nuclear and Radiation Safety Supervision Technology R&D Base, which serves as the test, verification, and R&D platform for providing consultation and technical support. An R&D system, however, remains to be formed. Future endeavors must focus on improving the technical support capacity of these systems. As an enhancement from institutional independence to capability independence is necessary for ensuring the independence of China’s nuclear safety regulatory institution, its regulatory capacity must be improved in the future.
        4,000원
        60.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.
        5,200원
        1 2 3 4 5