검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 61

        41.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.
        4,000원
        42.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report results of investigation of amplitude calibration for very long baseline interferome- try (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Base- line Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510−089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are se- lected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.
        4,000원
        45.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        VLBI experiments have been conducted by radio telescopes in the East Asia VLBI Network (EAVN) in which 14 telescopes in China, Japan, and Korea participated. One of the aims of the EAVN is to obtain higher angular resolution that is provided by the 6,000 km baseline between China and Japan and better sensitivity by adding large telescopes. Data were recorded at 1 a Gbps recording rate at all stations and processed on the Korea-Japan Joint VLBI Correlator (KJJVC) at the Korea-Japan Correlation Center (KJCC) after experiments. Fringes were obtained from these experiments conducted at 8 GHz and 22 GHz and post-correlation data analysis of the experiments is undergoing. The outcomes of these experiments open the possibility of conducting EAVN observations with global VLBI networks. In this presentation, the recent status of these experiments and future prospects are presented.
        3,000원
        46.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this proceedings, preliminary results of the KVN Source-Frequency Phase-Referencing (SFPR) observation of 3C 66A and 3C 66B are presented. The motivation of this work is to measure the core-shift of these 2 sources and study the temporal evolution of the jet opacity. Two more sources were observed as secondary reference calibrators and each source was observed at 22, 43, and 86 GHz simultaneously. Our preliminary results show that after using the observations at the lower frequency to calibrate those at the higher frequency of the same source, the residual visibility phases for each source at the higher frequencies became more aligned, and the coherence time became much longer; also, the residual phases for different sources, within 10 degrees angular separations, follow similar trends. After reference to the nearby calibrator, the SFPRed maps were obtained as well as the astrometric measurements, i.e. the combined coreshift. The measurements were found to be affected by structural blending effects because of the large beamsize of KVN, but this can be corrected with higher resolution maps (e.g. KAVA maps).
        3,000원
        47.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By probing nuclear regions and the overall properties of AGN hosts as a function of their environments, we aim to observationally examine how AGN activities are related to their surroundings. We have selected a representative sample of AGN hosts in the Virgo cluster. The selected galaxies are located in a range of density regions showing various morphologies in 1.4 GHz continuum emission. High-resolution obser- vations with the Korean VLBI Network (KVN) allow us to access the inner region of the AGN without suffering from dust extinction and synchrotron self-absorption. Since a number of our targets are too weak to be detected at K-band (22 GHz) within their coherence time, we applied phase referencing to calibrate fast atmospheric phase uctuations.
        3,000원
        48.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conduct Very Long Baseline Interferometry (VLBI) observations at 22 GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compare the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigate the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs shows that they are consistent with each other within < 8%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22 GHz. We also find that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.
        4,500원
        1 2 3 4