검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,279

        81.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
        4,800원
        82.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The chemical composition of 86 species of native plants in Korea, including plants to be afforestation, was analyzed. The chemical composition of the species analyzed was different. The species with the highest extractable content was Viburnum dilatatum (3.91%), and the species with the lowest extractable content was Ligustrum lucidum (0.11%). The lignin content ranged from 12 to 39%, with an average of 25%. The species with the highest lignin content was Chaenomeles lagenaria (39.37%). Hemicellulose content ranged from 18 to 52%, with the highest species being Thuja occidentalis (51.22%) and Eucommia ulmoides (48.84%). Cellulose content ranged from 25 to 58%, and the species with the highest content were Prunus serrulata (57.67%), Diospyros kaki (57.14%), Aesculus turbinata (53.29%), Albizia julibrissin (53.02%), and Zelkova serrata (52.29%). The chemical composition was different for each use taxon of 86 plant species. The lignin content was the highest in the fruit group and the lowest in the group other than recommended species for afforestation. Cellulose content was highest in non-reforestation-recommended tree species and lowest in fruit trees. In classification according to tree height, lignin content was higher in shrubs than in tall trees, and cellulose content was highest in tall trees. Between deciduous and evergreen trees, the lignin content was high in deciduous trees (26.46%), and the cellulose content was also high in deciduous trees (44.01%). As a result of analyzing the correlation between each compound, there was a difference. There tended to be a positive correlation between extractives and lignin content. There was a negative correlation between extractives and holocellulose content, hemicellulose and cellulose. The higher extract content affected the cellulose content much more than hemicellulose. Also, the higher the lignin content, the lower the cellulose content. The species with low lignin content and high cellulose content were Diospyros kaki and Prunus serrulata var. spontanea. This result is expected to be primary data for bioenergy, pulp industry and bioindustry.
        4,200원
        83.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study utilizes social big data to investigate the factors influencing the awareness, attitude, and behavior toward vegan fashion consumption among global and Korean consumers. Social media posts containing the keyword “vegan fashion” were gathered, and meaningful discourse patterns were identified using semantic network analysis and sentiment analysis. The study revealed that diverse factors guide the purchase of vegan fashion products within global consumer groups, while among Korean consumers, the predominant discourse involved the concepts of veganism and ethics, indicating a heightened awareness of vegan fashion. The research then delved into the factors underpinning awareness (comprehension of animal exploitation, environmental concerns, and alternative materials), attitudes (both positive and negative), and behaviors (exploration, rejection, advocacy, purchase decisions, recommendations, utilization, and disposal). Global consumers placed great significance on product-related information, whereas Korean consumers prioritized ethical integrity and reasonable pricing. In addition, environmental issues stemming from synthetic fibers emerged as a significant factor influencing the awareness, attitude, and behavior regarding vegan fashion consumption. Further, this study confirmed the potential presence of cultural disparities influencing overall awareness, attitude, and behavior concerning the acceptance of vegan fashion, and offers insights into vegan fashion marketing strategies tailored to specific cultures, aiming to provide vegan fashion companies and brands with a deeper understanding of their consumer base.
        5,500원
        84.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Animal experiments have demonstrated the effectiveness of fermented rice germ and soybean extracts in lowering blood alcohol concentration. A compound primarily derived from fermented soybean extract constitutes the principal component of DA-5521, an experimental dietary substance examined in this study. We investigated the possible hangover-alleviating effects of DA-5521 in individuals aged 19 to 50 who had previously experienced hangovers. Moreover, we enrolled 22 participants who met the eligibility criteria and conducted a double-blind, randomized, placebo-controlled crossover trial. Six hours after alcohol consumption, the test group exhibited a statistically significant reduction in blood acetaldehyde concentration compared with the placebo group. Further, our results displayed significantly lower levels in the DA- 5521 group at 0.50 and 0.75 h post-ingestion and substantially lower peak breath alcohol concentration compared to the placebo group. These findings confirm that consumption of DA-5521 can significantly ameliorate hangover symptoms by diminishing blood acetaldehyde concentration and reduce breath alcohol concentration.
        4,200원
        85.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
        4,000원
        86.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to attract students to the radio universe, we have constructed a three-element radio interferometer in the National Youth Space Center, Goheung, Korea. It consists of three 1.8 m off-axis parabola antennas with driving systems, sideband separation receivers operating in 12 GHz, a narrow band digitizer, and correlation software. We have used as many commercial products as possible to reduce development costs. The maximum separation of 20 m gives an angular resolution of ∼4′, and the shortest baseline of 3.8 m prevents a serious missing flux. Fringes are detected for several radio sources, including the sun and Cas A. After a rough relative calibration, we have derived visibilities for the sun, whose amplitudes are decreasing for longer baselines. We have made a solar image using the visibility amplitudes and closure phases, referring to the 17 GHz image by Nobeyama Radioheliograph. Developing a flexible real-time correlator seems most crucial if this kind of the system is to be used for more rigorous scientific studies.
        4,000원
        87.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A force-free field (FFF) is determined solely by the normal components of magnetic field and current density on the entire boundary of the domain. Methods employing three components of magnetic field suffer from overspecification of boundary conditions and/or a nonzero divergence-B problem. A vector potential formulation eliminates the latter issue, but introduces difficulties in imposing the normal component of current density at the boundary. This paper proposes four different boundary treatment methods within the vector potential formulation. We conduct a comparative analysis of the vector potential FFF solvers that we have developed incorporating these methods against other FFF codes in different magnetic field representations. Although the vector potential solvers with the new boundary treatments do not outperform our poloidal-toroidal formulation code, they demonstrate comparable or superior performance compared to the optimization code in SolarSoftWare. The methods developed here are expected to be readily applied not only to force-free field computations but also to time-dependent data-driven simulations.
        4,300원
        88.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.
        4,200원
        89.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cat-scratch disease (CSD) is a bacterial infection which primarily transmitted to humans through scratches, bites, or licks from infected cats. Even though CSD is generally a mild condition, atypical symptoms may appear and must be distinguished from other diseases. We encountered a 57-year-old woman who presented with intermittent pain in the right upper quadrant and epigastric part of the abdomen, and had lost 11 kg within a few months. She never had a cat and did not recall being scratched by a cat. Radiologic examinations strongly suggest a malignant bile duct tumor, thus liver resection was done. However, the result of histopathology was a CSD. At follow-up, the patient was stable and also showed improvement in her general condition. Hence, proper preoperative examinations of the patients are crucial in order to avoid excessive or inadequate treatment.
        4,000원
        90.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Cerebral palsy presents significant challenges in motor function for affected children. While conventional bottom-up approaches are common in physical therapy, there is increasing interest in the efficacy of the top-down approach. Objectives: To investigated the impact of applying the top-down approach in physical therapy for a child diagnosed with cerebral palsy, focusing on functional improvement and quality of life. Design: A single-case study. Methods: The patient was a 15-year-old boy with spastic diplegic cerebral palsy who was entering middle school. Cerebral palsy treatment approach of the top-down method (jumping rope) was used to guide and direct physical therapy. Results: The child improved in muscle strength of lower extremity, gross motor function, participation and self-esteem, but the pattern of his gait seemed to be more severe on tiptoe. When the child participated in a jumping rope class, he was able to do more than 10 jumps. Conclusion: The effectiveness of the top-down approach in enhancing functional outcomes and quality of life in children with cerebral palsy. It highlights the potential of this approach in pediatric physical therapy, warranting further research validation.
        4,000원
        91.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mg81Ni19-8wt.% REO (oxides of Lanthanum and Cerium) alloys were successfully prepared using mechanical alloying method with Mg-Ni alloy and REO powder. Phase analysis, structural characterization, and microstructure imagine of the alloys were conducted using X-ray diffraction (XRD), metallurgical microscope, and transmission electron microscopy (TEM) methods. Multi-phase structures, including the primary phase of Mg2Ni and several secondary phases of Mg + Mg2Ni, MgNi-LaO, and MgNi-CeO, were found in in the as-cast Mg81Ni19- 8wt.% REO alloys. XRD and TEM results showed that Ce exhibits variable valence behavior at various stages, and the addition of REO promotes the nanocrystalline of the alloy. The hydrogen absorption capacity of ball-milled Mg81Ni19 and Mg81Ni19- 8wt.%REO alloy for 2 h at 343 K is 1.34 wt.% and 1.83 wt.%, which are much larger than 0.94 wt.% of as-cast Mg81Ni19 alloy. The addition of REO led to a decrease of the thermal decomposition temperature of the alloy hydride by approximately 20 K and a reduction of the activation energy of the hydrogen desorption reaction by 10% and 13%, respectively.
        4,300원
        92.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conventional multi-scale modelling approach that predicts carbon nanotube (CNT) growth region in heterogeneous flame environment is computationally exhaustive. Thus, the present study is the first attempt to develop a zero-dimensional model based on existing multi-scale model where mixture fraction z and the stoichiometric mixture fraction zst are employed to correlate burner operating conditions and CNT growth region for diffusion flames. Baseline flame models for inverse and normal diffusion flames are first established with satisfactory validation of the flame temperature and growth region prediction at various operating conditions. Prior to developing the correlation, investigation on the effects of zst on CNT growth region is carried out for 17 flame conditions with zst of 0.05 to 0.31. The developed correlation indicates linear ( zlb=1.54zst +0.11) and quadratic ( zhb=zst(7-13zst )) models for the zlb and zhb corresponding to the low and high boundaries of mixture fraction, respectively, where both parameters dictate the range of CNT growth rate (GR) in the mixture fraction space. Based on the developed correlations, the CNT growth in mixture fraction space is optimum in the flame with medium-range zst conditions between 0.15 and 0.25. The stronger relationship between growth-region mixture-fraction (GRMF) and zst at the near field region close to the flame sheet compared to that of the far field region away from the flame sheet is due to the higher temperature gradient at the former region compared to that of the latter region. The developed models also reveal three distinct regions that are early expansion, optimum, and reduction of GRMF at varying zst.
        4,300원
        93.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Black phosphorus (BP) is incorporated in the electrochemical detection of uric acid (UA) to form few layers of BP nanosheets (BPNS)-modified glassy carbon electrodes (BPNS/GCE), investigated by means of ultrasound-assisted liquid-phase exfoliation. We find a significant increase in the peak current magnitude and positive potential shift in the electrochemical response of BPNS/GCE, which may be attributed to the larger specific surface area and good charge transfer ability of BPNS. Further, the electrochemical response of BPNS/GCE is evaluated under different conditions to achieve the optimal conditions. UA detection using differential pulse voltammetry (DPV) shows linear response within the range of 1–1000 μM with a detection limit of 0.33 μM. This work reveals new applications of BP nanomaterials in the electrochemical sensing, thereby promoting further advancement in terms of practical applications of two-dimensional nanomaterials.
        4,000원
        95.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Exploring cheap and efficient oxygen evolution reaction (OER) catalysts is extremely vital for the commercial application of advanced energy storage and conversion systems. Herein, a self-supporting Co3S4/ S-doped reduced graphene oxide ( Co3S4/S-rGO) film catalyst is successfully prepared by a blade coating coupled with high-temperature annealing strategy, and its morphology, structure and composition are measured and analyzed. It is substantiated that the as-synthesized Co3S4/ S-rGO film possesses unique self-supporting structure, and is composed of uniformly dispersed Co3S4 nanoparticles and highly conductive S-rGO, which benefit the exposure of catalytic sites and electron transfer. By reason of the synergistic effect of the two individual components, the self-supporting Co3S4/ S-rGO film catalyst displays outstanding catalytic performance towards OER. As a consequence, the Co3S4/ S-rGO film catalyst delivers an overpotential of 341 mV at 10 mA cm-2, and the current attenuation rate is only 2.6% after continuous operation for 4 h, verifying excellent catalytic activity and durability. Clearly, our results offers a good example for the construction of high-performance self-supporting carbon-based composite film catalysts for critical electrocatalytic reactions.
        4,000원
        96.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, an innovative electrochemical sensing platform was established for sensitive detection of NO2 —. This sensor was developed using CoFe alloy encapsulated in nitrogen-doped carbon nanocubes (named as CoFe@NC-NCS), synthesized through the calcination of polydopamine-coated CoFe Prussian-blue analogues (CoFe-PBA@PDA). The morphological and electrochemical characterization reveals that the CoFe@NC-NCS possesses high electrocatalytic activity for electrochemical quantitation of NO2 —, ascribed to the huge surface area and plentiful active positions, benefiting from the porous, hollow, and core–shell structure of CoFe@NC-NCS. Under the optimal conditions, CoFe@NC-NCS/GCE possessed remarkable sensing performance for NO2 — with wide liner ranges and a detection limit of 0.015 μM. NO2 — recovery experiments in real samples exhibited recoveries in the range of 98.8–103.5%. Hence, the CoFe@NC-NCS shows great promise for the construction of electrochemical sensor with more potential application.
        4,300원
        97.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dyeing process is a very important unit operation in the leather and textile industries; it produces significant amounts of waste effluent containing dyes and poses a substantial threat to the environment. Therefore, degradation of the industrial dye-waste liquid is necessary before its release into the environment. The current is focusing on the reduction of pollutant loads in industrial wastewater through remediating azo and thiazine dyes (synthetic solutions of textile dye consortium). The current research work is focused on the degradation of dye consortium through photo-electro-Fenton (PEF) processes via using dimensionally stable anode (Ti) and graphite cathode. The ideal conditions, which included a pH of 3, 0.1 (g/L) of textile dye consortium, 0.03 (g/L) of iron, 0.2 (g/L) of H2O2, and a 0.3 mAcm-2 of current density, were achieved to the removal of dye consortium over 40 min. The highest dye removal rate was discovered to be 96%. The transition of azo linkages into N2 or NH3 was confirmed by Fourier transforms infra-red spectroscopic analysis. PEF process reduced the 92% of chemical oxygen demand (COD) of textile dye consortium solution, and it meets the kinetics study of the pseudo-first-order. The degradation of dye through the PEF process was evaluated by using the cyclic voltammetric method. The toxicity tests showed that with the treated dye solution, seedlings grew well.
        4,800원
        98.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, reduced graphene oxide/polypyrrole (rGO/PPy) particles were synthesized and used to measure the amount of dopamine (DA) electrochemically. The obtained rGO/PPy particle was characterized by Fourier Transform Infrared Spectrophotometer (FTIR), UV–Visible Spectrophotometer (UV–Vis), and X-Ray Diffraction Diffractometry (XRD). To investigate the DA sensor performance, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to acquire electrochemical measurements of the sensor. Current values of 1.65 and 5.9 mA were observed in the CV at 0.2 mM and 1.2 mM concentrations of target molecule, respectively. Under optimized conditions, the linear calibration plots were found to exhibit significant sensitivity in the linear range of 0.2 and 1.2 mM, with a corresponding detection limit of 0.061 μM for DA. The results obtained were similar to the sensor results of DA made using precious metals. This work was a demonstration of the feasibility of high-sensitivity electrochemical analysis with conductive carbon materials without the use of precious metals. It was also observed that the cost-effective rGO/PPy exhibited a very high potential for DA detection.
        4,000원
        99.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Organic wastewater causes serious environmental pollution, and catalytic oxidation is promising technique for wastewater treatment. Developing green and effective catalysts is currently challenging. In this work, green synthesis of nano zerovalent iron loaded onto porous biochar derived from popcorn is conducted, and catalytic oxidation of Rhodamine B (RhB) is evaluated in the presence of H2O2. Effect of process factors is examined on catalytic performance for RhB removal. The mechanism of RhB removal is discussed by characterizations (Fourier transform infrared spectra and Raman) and UV–vis spectra. RhB removal is improved with high catalyst dosage, low initial RhB concentration, and high reaction temperature, while it is slightly influenced by carbonization temperature of biochar, H2O2 dosage and pH value. Under conditions of BC-250 1.0 g/L, H2O2 0.01 mol/L, pH 6.1, and temperature 30 °C, the removal rate of RhB is 92.27% at 50 min. Pseudo first-order kinetics is used to fitting experimental data, and the activation energy for RhB removal in BC-250/H2O2 system is 39 kJ/mol. RhB removal in BC-250/H2O2 system can be attributed to adsorption effect and catalytic oxidation with the dominant role of hydroxyl radical. This work gives insights into catalytic oxidation of organic wastewater using green catalyst.
        4,200원
        100.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The root-lesion nematode Pratylenchus spp. is the most important plantparasitic nematode due to its worldwide distribution, wide host ranges, and migratory endoparasitic characteristics. One population of Pratylenchus collected from the giant pussy willow (Salix chaenomeloides Kimura) in the Andong area as part of a nematode survey in Korea was characterized morphologically and by molecular methods. The analysis of morphological measurements and morphometric characteristics, as well as DNA sequencing of the rRNA large subunit (LSU) D2/D3 expansion segments and the internal transcribed spacer (ITS) gene sequence, confirmed the identity of this population as P. hippeastri. This study is the first report of P. hippeastri associated with Salix chaenomeloides in Korea and worldwide. Further studies on distribution and pathogenicity in different P. hippeastri host crops, such as grapevines, strawberries, and apples, are necessary. The taxonomic keys to 16 Pratylenchus species in Korea are provided.
        4,000원
        1 2 3 4 5