검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 815

        104.
        2022.10 구독 인증기관·개인회원 무료
        During electrorefining, fission products, such as Sr and Cs, accumulate in a eutectic LiCl-KCl molten salt and degrade the efficiency of the separation process by generating high heat and decreasing uranium capture. Thus, the removal of the fission products from the molten salt bath is essential for reusing the bath, thereby reducing the additional nuclear waste. While many studies focus on techniques for selective separation of fission products, there are few studies on processing monitoring of those techniques. In-situ monitoring can be used to evaluate separation techniques and determine the integrity of the bath. In this study, laser-induced breakdown spectroscopy (LIBS) was selected as the monitoring technique to measure concentrations of Sr and Cs in 550°C LiCl-KCl molten salt. A laser spectroscopic setup for analyzing high-temperature molten salts in an inert atmosphere was established by coupling an optical path with a glove box. An air blower was installed between the sample and lenses to avoid liquid splashes on surrounding optical products caused by laser-liquid interaction. Before LIBS measurements, experimental parameters such as laser pulse energy, delay time, and gate width were optimized for each element to get the highest signal-to-noise ratio of characteristic elemental peaks. LIBS spectra were recorded with the optimized conditions from LiCl-KCl samples, including individual elements in a wide concentration range. Then, the limit of detections (LODs) for Sr and Cs were calculated using calibration curves, which have high linearity with low errors. In addition to the univariate analysis, partial least-squares regression (PLSR) was employed on the data plots to obtain calibration models for better quantitative analysis. The developed models show high performances with the regression coefficient R2 close to one and root-mean-square error close to zero. After the individual element analysis, the same process was performed on samples where Sr and Cs were dissolved in molten salt simultaneously. The results also show low-ppm LODs and an excellent fitted regression model. This study illustrates the feasibility of applying LIBS to process monitoring in pyroprocessing to minimize nuclear waste. Furthermore, this high-sensitive spectroscopic system is expected to be used for coolant monitoring in advanced reactors such as molten salt reactors.
        109.
        2022.10 구독 인증기관·개인회원 무료
        Material balance evaluation is an important measure to determine whether or not nuclear material is diverted. A prototype code to evaluate material balance has been developed for uranium fuel fabrication facility. However, it is difficult to analyze the code’s functionality and performance because the utilization of real facility data related to material balance evaluation is very limited. It is also restricted to deliberately implement various abnormal situations based on real facility data, such as nuclear diversion condition. In this study, process flow simulator of uranium fuel fabrication facility has been developed to produce various process data required for material balance evaluation. The process flow simulator was developed on the basis of the Simulink-SimEvents framework of the MathWorks. This framework is suitable for batch-based process modeling like uranium fuel fabrication facility. It dynamically simulates the movement of nuclear material according to the time function and provides process data such as nuclear material amount at inputs, outputs, and inventories required for Material Unaccounted For (MUF) and MUF uncertainty calculation. The process flow simulator code provides these data to the material balance evaluation code. And then the material balance evaluation code calculates MUF and MUF uncertainty to evaluate whether or not nuclear material is diverted. The process flow simulator code can simulate the movement of nuclear material for any abnormal situation which is difficult to implement with real process data. This code is expected to contribute to checking and improving the functionality and performance of the prototype code of material balance evaluation by simulating process data for various operation scenarios.
        110.
        2022.10 구독 인증기관·개인회원 무료
        Nuclear power plants, which are important national facilities, require special attention against the threat of terrorism using various methods. Among the terrorist threats, as structural damage and human casualties due to explosions continue to occur, interest in the blast load is increasing. However, domestic nuclear power plants do not have sufficient design requirements for protection against the threat of explosives. To prepare for the threat of terrorism using explosives, it is necessary to evaluate the physical protection performance of nuclear power plants against blast load, and to use this to improve protection performance and establish regulatory standards. Most of the explosion-proof designs used abroad use the empirical chart presented by UFC 3-340- 02 (DoD 2008), which does not take into account the effect of near-field explosions. When explosions occur inside nuclear power plants, near-field explosions occur in most cases. In this study, it was assumed that explosives were installed in the corridor inside nuclear power plants. A spherical TNT was placed in the middle of the corridor floor to simulate near-field explosions, and the structure response according to the weight of the TNT was evaluated. The corridor was modeled with a reinforced concrete material and the LS-DYNA program was used for analysis. For the explosion model, the Arbitrary-Lagrangian-Eulerian (ALE) analysis technique applying the advantages of the Lagrangian and Eulerian methods were used. By analyzing the pressure history and the degree of deformation of the structure according to the explosion, the degree of threat caused by the explosion was analyzed. Based on the analysis of this study, physical barriers performance database (DB) using Modeling & Simulation (M&S) will be constructed by performing sensitive analysis such as representative structure shape setting, boundary conditions, material of structures, etc. The constructed DB is expected to be used to establish regulatory standards for the physical barriers of nuclear power plants related to explosives.
        112.
        2022.10 구독 인증기관·개인회원 무료
        The IAEA states that in the event of sabotage, nuclear material and equipment in quantities that can cause high radiological consequences (HRC), as well as the minimum systems and devices necessary to prevent HRC, must be located within one or more vital areas. Accordingly, in Article 2 of the ACT ON PHYSICAL PROTECTION AND RADIOLOGICAL EMERGENCY, the definition of the vital area is specified, and a nuclear facility operator submits a draft to the Nuclear Safety and Security Commission to establish vital areas and must obtain approval from Nuclear Safety and Security Commission. Since the spent fuel pool and new fuel storage area are areas where nuclear material is used and stored, they can be candidates for vital areas as direct targets of sabotage. The spent fuel pool is a wet spent fuel storage facility currently operated by most power plants in Korea to cool and store spent nuclear fuel. Considering the HRC against sabotage, it is necessary to review whether sepnt fuel pool needs to establish a vital area. In addition, depending on the status of plant operation during the spent fuel management cycle, the operation status of safety systems to mitigate accidents and power system change, so vital areas in fuel handling building (including spent fuel pool) also need to be adjusted flexibly. This study compares the results of the review on whether the essential consideration factors are reflected in the identification of essential safety systems and devices to minimize HRC caused by sabotage in the spent fuel storage system with the procedure for identifying the vital area in nuclear power plants. It was reviewed from the following viewpoints: Necessity to identify necessary devices to minimize the radiation effects against sabotage on the spent fuel pool, Review of necessary elements when identifying vital areas to minimize the radiation effects of spent fuel pool against sabotage, Necessity to adjust vital areas according to the spent fuel management cycle. The main assumptions used in the analysis of the vital area of the power plant need to be equally reflected when identifying vital areas in spent fuel pool. And, the results of this study are for the purpose of minimizing the radiological consequences against sabotage on the spent fuel storage system including the spent fuel pool and used to establish regulatory standards in the spent fuel storage stage.
        119.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, ESG activities (Environment, Social and Governance) have been paid more and more attention by enterprises and their stakeholders in various countries. China is the largest developing country in the world. The ESG performance of Chinese listed enterprises helps to understand the shortcomings of their sustainable development ability and further enhance the firm value. Moreover, the interaction effect between green innovation investment and ESG activities is of great significance for enterprises to balance the resource allocation between the two factors in the future. Taking listed Chinese manufacturing companies from 2011 to 2020 as an example, this study investigates the influence of ESG activities on financial performance and non-financial performance, and tests the moderating role of green innovation. Our results show that: (1) ESG performance has a negative impact on financial performance; (2) ESG performance has a positive impact on non-financial performance; (3) Green innovation can positively adjust the negative impact of environmental activities on financial performance. However, it will enhance the negative impact of governance activities on financial performance. The interaction effect between green innovation and social activities on corporate financial performance is a substitution effect; (4) With the improvement of green innovation level, the positive impact of ESG overall performance and environmental performance on corporate reputation will also be suppressed.
        4,200원
        120.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        African swine fever (ASF) is a hemorrhagic viral disease of pigs requiring laboratory diagnosis for confirmation. Though tissue and blood samples are considered optimal for ASF diagnosis, collection of these samples can be laborious, time-consuming, and pose a risk of contaminating the environment. Here, we suggest an alternative non-invasive sampling method, hair plucking, for ASF diagnosis. ASF virus was detected in plucked hair samples from experimentally infected pigs. Although the sensitivity was inferior to whole blood, the results suggest that hair plucking can be an alternative method that can also improve animal welfare.
        3,000원