검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 240

        154.
        2010.04 KCI 등재 서비스 종료(열람 제한)
        Italian Ryegrass, also called annual ryegrass, is a high productivity and feed value, and an upright grass that behaves like a biennial or short-lived perennial. It grows vigorously in winter and early spring. Italian ryegrass and a related species, perennial ryegrass, Lolium perenne, are the two common weedy ryegrassses. Italian ryegrass and perennial ryegrass can hybridize, resulting in offspring that are difficult to identify as either species. Ryegrasses are cultivated for turf and forage. Sometimes Italian ryegrass is grown as cover crop. It has the potential to produce high yields and, with proper management, can be high quality with good animal performance. To develop of a high quality, productivity and early variety, 11 varieties were in the seven different irradiation conditions (0Gy, 100Gy, 200Gy, 300Gy, 400Gy, 500Gy, 1,000Gy) and examined growth and germination characters of each plant as like plant height, number of tillers. As a increase of irradiation, germination rate of 11 Italian ryegrass varieties are somewhat reduced.
        155.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.