검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A lab-scale Anaerobic Baffled Reactor (ABR) was applied to treat a primary sludge taken from a municipal wastewater treatment plant. In this experiment, acidogenic reaction was promoted by operating the ABR with short hydraulic retention time (HRT) to produce sufficient volatile fatty acids (VFA) instead of production of methane. The performance of ABR on the VFA production and total solids reduction was observed with different operating conditions with 2, 4, 6, and 8 days of HRT. Corresponding organic loading rates were 6.7, 3.4, 2.2, and 1.6 kgCODcr /m3·day. As HRT increased the removal rate of TCOD was also increased (82.5, 84.2, 96.9, and 95.9 % in average for HRT of 2, 4, 6, and 8 days, respectively) because the settlement of solids was enhanced in the baffle by the decrease of upflow velocity. At HRT of 2 days the average concentration of VFA in the effluent was measured at 1,306±552 mgCOD/L corresponding to 107 % increment as compared to the VFA concentration in the influent. However, as HRT increased VFA concentraiotn was decreased to 143±552 mgCOD/L at HRT of 8 days. The reduction rates of total solids were 12.2, 26.5, 24.8, and 43.0 % for HRT of 2, 4, 6, and 8 days. As HRT increased the hydrolysis of organic particulate matters in the reactor was enhanced due to the increasing of solids retention time in the baffle zone with low upflow velocity in long HRT condition. Consequently, we found that a primary sludge became a good source of VFA production by the application of ABR process with HRT less than 4 days and the 12-26 % of total solids reduction was expected at these conditions.
        4,200원