검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        An insect-like flapping-wing flying-robot should be able to produce flight forces and control moments at the same time only by flapping wings, because there is no control surface at tail just like an insect. In this paper, design principles for the flapping mechanism and control moment generator are briefly explained, characteristics measured force and moment generations of the robot are presented, and finally controlled flight of the flying robot is demonstrated. The present insect-like robot comprises a lightweight flapping mechanism that can produce a flapping angle larger than 180° and a control moment generator that produces pitch, roll, and yaw moments by adjusting location of the trailing edges at the wing roots. The measured force and moment data show that the control input angles less than 9° would not significantly reduce the vertical force generation. It is also observed that the pitch, roll, and yaw control moments are produced only by the corresponding control input. The simple PID control theory is used for the controlled flight of the flying robot, controlling pitch, roll, and yaw motions. The flying robot successfully demonstrated controlled flight for about 40 seconds.
        2.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.