검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the Ranque-Hilsch vortex tube is widely used for the local cooler of industrial equipment for special purpose. Although many studies on energy extraction in the vortex tube using air as the working fluid have been made so far, a few experimental studies treated solid particles extraction for incompressible fluid. So, an experimental study for the solid particles extraction in the vortex tube(Ranque-Hilsch vortex tube) using the water which is essentially an incompressible fluid is presented. The experiments were carried out with various cold end orifice diameter ratios ranging from 0.25 to 0.70, the input pressure ranging from 1 to 3MPa was considered. The emphasis was given to examine the effect of geometry factors of vortex tube at working fluid(water) for solid particles(Al2O3) extraction. The optimum geometry factor and inlet pressure for the maximum solid particles extraction was found that the smaller cold end orifice diameter ratio and the higher inlet pressure in experimental condition increase.
        4,000원
        3.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.