검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        Security robot has gradually developed and deployed in order to protect civilian’s lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.
        2.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        Various driving mechanisms to adapt to uneven environment have been developed for many urban search and rescue (USAR) missions. A tracked mechanism has been widely used to maintain the stability of robot’s pose and to produce large traction force on uneven terrain in this research area. However, it has a drawback of low energy efficiency due to friction force when rotating. Moreover, single tracked mechanism can be in trouble when the body gets caught with high projections, so the track doesn’t contact on the ground. A transformable tracked mechanism is proposed to solve these problems. The mechanism is designed with several articulations surrounded by tracks, used to generate an attack angle when the robot comes near obstacles. The stair climbing ability of proposed robot was analyzed since stairs are one of the most difficult obstacles in USAR mission. Stair climbing process is divided into four separate static analysis phases. Design parameters are optimized according to geometric limitations from the static analysis. The proposed mechanism was produced from optimized design parameters, and demonstrated in artificially constructed uneven environment and the actual stairway.
        3.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        In this paper, a new driving mechanism of security robots which should overcome obstacles with stability even though moving in high speed is introduced. The driving mechanism has spring-based suspension and two wheels positively necessary to overcome obstacles. From the driving mechanism, it is mainly discussed how we can decrease overshoot and impulse occurred when the robot is in the process of overcoming obstacles. Finally, design parameters of the driving mechanism which guarantees stable motion while overcoming obstacles is deduced based on simulation results. Experiments are also followed to demonstrate how well the manufactured system works in its early stage of the practical use.