Lithium dihydrogen phosphate (LiH2PO4) powder was purchased from Aldrich Chemical Co. Fromthe scanning electron microscope (SEM) observation, these polycrystals have dimensions in the range of 25-250µm. The electrical conductivity was measured at a measuring frequency of 1 kHz on heating polycrystallinelithium dihydrogen phosphate (LiH2PO4) from room temperature to 493 K. Two anomalies appeared at 451K (Tp1) and 469 K (Tp2). The electrical conductivity reached the magnitude of the superprotonic phases: 3×10-2Ω-1cm-1 at 451 K (Tp1) and 1.2×10Ω-1cm-1 at 469 K (Tp2). It is uncertain whether the superprotonic phasetransformations are due to polymorphic transitions in the bulk, surface transitions, or chemical reactions(thermal decomposition) at the surface. Considering several previous thermal studies (differential scanningcalorimetry and thermogravimetry), our experimental results seem to be related to the last case: chemicalreactions (thermal decomposition) at the surface with the progressive solid-state polymerization.
Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and SiO2/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at 900˚C. It was found that the diameter of the MWNTs on the Si substrate sample is approximately 5~10nm larger than that of a SiO2/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.