검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinates using extrinsic calibration matrixes of a camera-LRF ( ) and a camera calibration matrix ( ). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.
        2.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        This paper describes an efficient path generation method for area coverage. Its applications include robots for de-mining, cleaning, painting, and so on. Our method is basically based on a divide and conquer strategy. We developed a novel cell decomposition algorithm that divides a given area into several cells. Each cell is covered by a robot motion that requires minimum time to cover the cell. Using this method, completeness and time efficiency of coverage are easily achieved. For the completeness of coverage in dynamic environments, we also propose a path following method that makes the robot cover missed areas as a result of the presence of unknown obstacles. The effectiveness of the method is verified using computer simulations.