In a pilot-scale dyeing wastewater treatment using two-type fluidizing media, each thickness of biofilm was 15 and 30 μm, respectively. The numbers of protozoa inhabited in small-size (PEMT A) and big-size (PEMT B) media were 7.5 x 104 and 1.25 x 105 cells/ml, respectively, and dominant species were Entosiphon sulcatus var sulcatus in PEMT A and Chlamydomonas reinhardtii in PEMT B, respectively. Flask experiments using the two media revealed that the percentages of color removal were 25.8% in PEMT A and 27.1% in PEMT B after 72-h cultivation, indicating the necessity of bioaugmentation. Experiments for bioaugmentation effect on color removal were carried out in the pilot-scale treatment for 75 d by three-step operation under the control of wastewater loading rate and microbial input rate. Dye degradation occurred mainly in the second reaction tank, and the attachment of augmented dye-degrading microorganisms to media took at least 35 d. Final value of chromaticity in effluent was 227, meeting the required standard. Therefore bioaugmentation onto media was good for color treatment. In summary, thickness of biofilm formed on the media depended upon the size of media, resulting in different ecosystem inside the media. Hence, this affected microbial community and color treatment further. Accordingly, the reduction of operation cost is expected by efficient color-treatment process using bioaugmented media.
A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide(H2S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as H2S oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of H2S inlet concentration and EBCT(Empty Bed Contact Time) on H2S elimination. The pressure drop for particles of size range from 5.6 to 10 ㎜ was 14 ㎜H2O/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under H2S inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of 15.2 ℓ/min. H2S removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of H2S inlet concentration. When EBCT was reduced to 5.5 sec, H2S removal efficiency decreased by about 12 percent. The maximum H2S elimination capacity was determined to be 269g-H2S/㎥·hr.