해양 환경에서 발생하는 화재는 일반적인 화재 상황에 비해 빠르게 화염이 전파되기 때문에 초기 발견과 대응이 매우 중 요하다. 최근의 화재 감지 시스템은 카메라 센서와 딥러닝 검출 모델을 활용하여 개발되고 있지만, 해양 환경에 특화된 딥러닝 모델 을 학습하기 위해 해양 환경에서 화재 데이터를 실제로 수집하는 것은 기술적, 경제적 측면에서 어려움이 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 언리얼 엔진 기반 가상 데이터 생성 도구를 활용하여 가상 환경에서 해양 환경을 구축하고 여러 상황 의 시나리오에서 데이터를 수집하여 해양 환경 화재 가상 데이터셋을 구축하였다. 가상 데이터셋으로 학습한 RT-DETR-L 모델은 실 제 해양 환경에서 발생한 화재 상황을 수집하여 제작한 테스트 데이터셋에서 mAP50:95 0.529를 달성하였다. 또한 가상 데이터로 학습 한 검출 모델은 일반적인 화재 상황이나 항만시설에서 연기만 발생하는 상황에서도 화재를 검출하는 것을 볼 수 있었다. 이를 통해 실제 데이터가 아닌 가상 데이터셋을 사용하여 데이터셋을 구축하여도 해양 환경 화재와 같은 특수한 상황에서의 검출 모델 성능 향 상에 도움을 줄 수 있다는 것을 확인하였다.
Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.