In this study, an operational data set was analysed by establishing a path model to figure out the actual cause-effect relationship of a wastewater treatment plant (WWTP); in particular, for the effluent concentrations of T-N and T-P. To develop the path models, data sets of operational records including effluent concentrations and operational factors were obtained from a field scale WWTP of 680,000 m3 of treatment capacity. The models showed that the relationship networks with the correlation coefficients between variables for objective expressions indicated the strength of each relationship. The suggested path models were verified according to whether the analyzation results matched known theories well, but sophisticated minute theoric relationships could not be cropped out distinctly. This indicates that only a few paths with strong theoric casual relationships were represented as measured data due to the high non-linearity of the mechanism of the removal process in a biological wastewater treatment.
In this research, the target process was a modified type of a conventional aeration tank with four different influent feeding points and alternated aeration to obtain nitrogen removal. For more accurate switching of influent feeding, the process was operated under a designed control strategy based on monitoring of NH4-N and NOX-N concentrations in the tank. However, the strategy did have some limitations. For example, it was not sensitive to detecting the end of each reaction when losing the balance between nitrification and denitrification of each opposite part of biological tank. To overcome the limitations of the existing control strategy, a diagnosis-based control strategy was suggested in this research using the diagnosis results classified as normal (N), ammonia accumulation (AA) and nitrate accumulation (NA). Using the pre-designed rules for control actions, the aeration and volume of the aerated part of the reactor could be increased or decreased at a fixed mode time. In simulations of the suggested diagnosis-based control strategy, the NH4-N and NOX-N removal rates in the reactor were maintained at higher levels than those of the existing control strategy.