PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.
PURPOSES : The aim of this study is to review freeze-and-thaw testing apparatuses, develop a freeze-and-thaw testing setup with a test protocol, test the freeze-and-thaw properties of soils collected from different parts of South Korea, and suggest an index for frost susceptibility criteria for soils found in South Korea.
METHODS : Based on a literature review, a new freeze-thaw testing setup was developed. In addition, a test protocol was developed for freeze-thaw testing. Soils collected from different parts of South Korea and bedding sand used for block pavements were tested to determine whether the measurements from the newly developed test setup could capture important freeze-thaw characteristics of the soils. Finally, to develop local frost susceptibility criteria, a parameter including both the vertical deformation and thermal conductivity characteristics of the soils was suggested.
RESULTS : The results from the laboratory experiments indicate that the newly developed freeze-and-thaw setup captures the required parameters to quantify the responses of soils subjected to cyclic freeze-and-thaw testing. In addition, a vertical deformation of up to 2.437 mm is measured. Moreover, seven soils out of the nine tested soils are classified as having a medium frost susceptibility, whereas the remaining two show low frost susceptibility. The bedding sand experiment also shows that there is a possibility of having a frost susceptible condition based on the moisture content. When submerged, the bedding sand is classified as having a medium frost susceptibility.
CONCLUSIONS : The "HEART" freeze-thaw testing setup was able to capture the parameters required for evaluating the frost susceptibility of soils. This setup and testing procedure could be further used to test and prepare criteria for classifying the frost susceptibility of soils found in South Korea.
PURPOSES : The objective of this study is to understand blow-up distress and causes in concrete pavement.
METHODS : Feasible causes of blow-up and existing models were reviewed based on the literature. Three analytical models were adopted to perform a sensitivity analysis. Input parameters reflected the typical concrete pavement of national expressways. Evaluation of blow-up models was based on the amount of temperature increase and zero stress temperature of the concrete pavement.
RESULTS : A review of the literature indicated that the five major causes of blow-up were: increase in temperature and solar radiation, alkaliaggregate reaction (AAR), friction characteristics between the concrete slab and subbase, joint closure (incompressible), and joint freezing. The sensitivity analysis revealed that the coefficient of thermal expansion had the greatest influence on the blow-up safety temperature.
CONCLUSIONS : From existing blow-up model results, it could be concluded that the construction of concrete pavement during the winter season was not effective at preventing blow-up. In addition, an equivalent coefficient of thermal expansion that considers slab expansion due to AAR was proposed as a model input parameter for concrete pavement sections damaged by AAR.