작물의 생체중을 추정하기 위해 다양한 연구가 시도되었지만, 이미지를 활용하여 생체중을 추정한 예는 없었다. 최근 합성곱 신경망을 사용한 이미지 처리 연구가 늘고 있으며, 합성곱 신경망은 미가공 데이터를 그대로 사용할 수 있다. 본 연구에서는 합성곱 신경망을 이용하여 미가공 데이터 상태인 특정 시점의 파프리카 이미지를 입력으로 작물의 생체중을 추정하도록 학습하였다. 실험은 파프리카(Capsicum annuum L.)를 재배하는 온실에서 수행하였다. 합성곱 신경망의 출력값인 생체중은 파괴조사를 통해 수집한 데이터를 기반으로 회귀 분석하였다. 학습된 합성곱 신경망의 결정 계수(R2)의 최고값은 0.95로 나타났다. 생체중 추정값은 실제 측정값과 매우 유사한 경향성을 보여주었다.
온도와 상대습도는 작물 재배에 있어서 중요한 요소로써, 수량과 품질의 증대를 위해서는 적절히 제어 되어야 한다. 그리고 정확한 환경 제어를 위해서는 환경이 어떻게 변화할지 예측할 필요가 있다. 본 연구의 목적은 현 시점의 환경 데이터를 이용한 다층 퍼셉트론(multilayer perceptrons, MLP)을 기반으로 미래 시점의 기온 및 상 대습도를 예측하는 것이다. MLP 학습에 필요한 데이터는 어윈 망고(Mangifera indica cv. Irwin)을 재배하는 8 연동 온실(1,032m2)에서 2016년 10월 1일부터 2018년 2 월 28일까지 10분 간격으로 수집되었다. MLP는 온실 내부 환경 데이터, 온실 외 기상 데이터, 온실 내 장치의 설정 및 작동 값을 사용하여 10~120분 후 기온 및 상대습도를 예측하기 위한 학습을 진행하였다. 사계절이 뚜렷한 우리나라의 계절에 따른 예측 정확도를 분석하기 위해서 테스트 데이터로 계절별로 3일간의 데이터를 사 용했다. MLP는 기온의 경우 은닉층이 4개, 노드 수가 128개일 때(R2 = 0.988), 상대습도는 은닉층 4개, 노드 수 64개에서 가장 높은 정확도를 보였다(R2 = 0.990). MLP 특성상 예측 시점이 멀어질수록 정확도는 감소하 였지만, 계절에 따른 환경 변화에 무관하게 기온과 상대 습도를 적절히 예측하였다. 그러나 온실 내 환경 제어 요소 중 분무 관수처럼 특이적인 데이터의 경우, 학습 데이터 수가 적기 때문에 예측 정확도가 낮았다. 본 연구에서는 MLP의 최적화를 통해서 기온 및 상대습도를 적절히 예측하였지만 실험에 사용된 온실에만 국한되었다. 따라서 보다 일반화를 위해서 다양한 장소의 온실 데이터 이용과 이에 따른 신경망 구조의 변형이 필요하다.
광도, 포차와 같은 환경요인과 엽면적 지수와 같은 생육요인은 증산 속도를 변화시키는 중요한 변수이다. 본 연구에서는 Penman-Monteith의 증산 모델과 인공신경망 (ANN)에 학습에 의한 증산속도 추정값을 비교하는 것을 목표로 하였다. 파프리카(Capsicum annuum L. cv. Fiesta)의 증산속도 추정은 로드셀을 이용한 배지의 중량 변화를 통해 계산하였다. 온도, 상대습도, 배지 중량 데이터는 1분 단위로 2개월간 수집하였다. 증산량은 일차식으로는 정확한 추정이 어렵기 때문에, 기존의 Penman-Monteith식에 보정 광도를 사용한 수정식 Shin 등(2014)을 사용하였다. 이와는 별개로 ANN을 사용하여 증산량을 추정 비교하였다. 이를 위하여 광도, 온도, 습도, 엽면적지수, 시간을 사용한 입력층과 5개의 은닉층으로 구성된 ANN을 구축하였다. 각 은닉층의 퍼셉트론 개수는 가장 정확성이 높은 512개로 하였다. 검증 결과, 보정된 Penman-Monteith 모델식의 R2 = 0.82이었고, ANN의 R2 = 0.94로 나타났다. 따라서 ANN은 일반적인 모델식에 비해 정확한 증산량 추정이 가능한 것으로 나타났고, 추후 수경재배의 효율적인 관수전략 수립에 있어 적용 가능할 것으로 판단되었다.