The simulated dyes solution containing Basic Red 46(BR 46), Yellow 21(Y 21), and Maxilon Blue 30(MB 30) were electrochemically oxidized using carbon fiber as an anode. The electrolyses were performed in a electrolytic flow cell constructed by Vycor glass tube. The carbon fiber was positioned in the inside of Vycor glass tube and platinum wire coiled around outside of tube as a cathode. Several operating variables, such as current, time, pH and flow rate of solution were studied. Increasing current density would lead to a corresponding increase in the dye removal efficiency 99.2 % at a 200 mA. The electrolyses time could also improve and removal efficiency was about 99 % after 1.5 hours of electrolyses. The removal efficiency was increased with the increase of flow rate of solution and optimum flow rate was 5 mL/min. THe pHs of solution affect the removal efficiency. The removal efficiency was decreased with the increase of pH of solution and optimum pH was 5.05 (0.1 M KNO3).
A study on the removal of Pb ion from Pb-contaminated soil was carried out, using ex-situ extraction process. Tartaric acid (TA) and iminodiacetic acid sodium salt (IDA) as a washing agent were evaluated as a function of concentration, reaction time, mixing ratio of washing agent and recycling of washing agent. TA showed a better extraction performance than IDA.
The optimum washing condition of TA and IDA were in the ratio of 1 : 15 and 1 : 20 between soil and acid solution during 1 hr reaction. The total concentrations of Pb ion by TA and IDA at three repeated extraction, were 368.8 ppm and 267.5 ppm, respectively.
The recovery of Pb ion from washing solution was achieved by adding calcium hydroxide and sodium sulfide, form the precipitation of lead hydroxide and lead sulfide, and optimum amounts of sodium sulfide and calcium hydroxide were 7 g/ℓ for the TA washing solution and 4 g/ℓ , 5 g/ℓ for the IDA washing solution, respectively. The efficiency of recycle for TA and IDA washing solution were 78.8%, 95.1% and 89.2%, 96.6%, at third extractions under Na2S and Ca(OH)2, respectively.