검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: 8-16 μm (D50 = 4.3 μm), 10-20 μm (D50 = 6.92 μm), and 12-22 μm (D50 = 8.94 μm). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of 780oC and 830oC. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, Co3O4) and W-based (WO2) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.
        4,000원
        2.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the microstructure and wear resistance property of HPHT (high pressure high temperature) sintered PDC (polycrystalline diamond compact) in accordance with initial molding pressure. After quantifying an identical amount of diamond powder, the powder was inserted in top of WC-Co sintered material, and molded under four different pressure conditions (50, 100, 150, 200 kgf/cm2). The obtained diamond compact underwent sintering in high pressure, high temperature conditions. In the case of the 50 kgf/cm2 initial molding pressure condition, cracks were formed on the surface of PDC. On the other hand, PDCs obtained from 100~200 kgf/cm2 initial molding pressure conditions showed a meticulous structure. As molding pressure increased, low Co composition within PDC was detected. A wear resistance test was performed on the PDC, and the 200 kgf/cm2 condition PDC showed the highest wear resistance property.
        4,000원
        3.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a 12~22 μm- and 8~16 μm-sized main particles, and 1~2 μm-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.
        4,000원
        4.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.
        4,000원
        5.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and hardness of (W,Ti)C cemented carbides with a different metallic binder composition of Ni and Co fabricated by powder technology were investigated. The densifications of the prepared materials were accomplished by using vacuum sintering at . Nearly full dense (W,Ti)C cemented carbides were obtained with a relative density of up to 99.7% with 30 wt.% Co and 99.9% with 30 wt.% Ni as a metallic binder. The average grain size of the (W,Ti)C-Co and the (W,Ti)C-Ni was decreased by increasing the metallic binder content. The hardness of the dense (W,Ti)C-15 wt%Co and (W,Ti)C-15 wt%Ni, was greater than that of the other related cemented carbides; in addition, the cobalt-based cemented carbides had greater hardness values than the nickel-based cemented carbides.
        4,000원