We present a region-based approach for accurate pose estimation of small mechanical components. Our algorithm consists of two key phases: Multi-view object co-segmentation and pose estimation. In the first phase, we explain an automatic method to extract binary masks of a target object captured from multiple viewpoints. For initialization, we assume the target object is bounded by the convex volume of interest defined by a few user inputs. The co-segmented target object shares the same geometric representation in space, and has distinctive color models from those of the backgrounds. In the second phase, we retrieve a 3D model instance with correct upright orientation, and estimate a relative pose of the object observed from images. Our energy function, combining region and boundary terms for the proposed measures, maximizes the overlapping regions and boundaries between the multi-view co-segmentations and projected masks of the reference model. Based on high-quality co-segmentations consistent across all different viewpoints, our final results are accurate model indices and pose parameters of the extracted object. We demonstrate the effectiveness of the proposed method using various examples.
This paper presents a new sensor system. CALOS, for motion estimation and 3D reconstruction. The 2D laser sensor provides accurate depth information of a plane, not the whole 3D structure. On the contrary, the CCD cameras provide the projected image of whole 3D scene, not the depth of the scene. To overcome the limitations, we combine these two types of sensors, the laser sensor and the CCD cameras. We develop a motion estimation scheme appropriate for this sensor system.In the proposed scheme, the motion between two frames is estimated by using three points among the scan data and their corresponding image points, and refined by non-linear optimization. We validate the accuracy of the proposed method by 3D reconstruction using real images. The results show that the proposed system can be a practical solution for motion estimation as well as for 3D reconstruction.