검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.
        4,000원
        2.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.
        4,000원
        3.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.
        4,000원
        4.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties of the nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.
        4,000원
        5.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the alloy powder. With increasing the annealing temperature the complex permeability (), permittivity () and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.
        4,000원
        6.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The oxidation of nanocrystalline powder has been conducted to investigate its influence on the electromagnetic wave absorption characteristics of the soft magnetic material. Oxidation occurred primarily on the surface of nanocrystals. Oxidation reduced the real part of complex permeability due to the reduction of the relative volume of the powder, which otherwise contributes to the permeability. Oxidation reduced the absorption efficiency of the sheet at frequencies over 1GHz, indicating that the relative contribution of skin depth increments to the absorption was not significant. The pulverization and milling process lowered the optimum crystallization temperature of the material by because of the internal energy accumulated during the fragmentation and powder thinning processes.
        4,000원
        7.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric powders and binders. As a result, the addition of powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder
        4,000원
        8.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave (EM) absorption properties of various particle size have been investigated in a sheet-type absorber using the alloy powder. With decreasing the average particle size, the complex permeability () and permittivity () increased and the matching frequency is shifted toward lower frequency. The fabricated EM wave absorbers showed permeability , permittivity for a mesh sample, and the calculated power absorption was as high as 80% in the frequency range over 2 GHz.
        3,000원
        9.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The amorphous alloy strip was pulverized to get a flake-shaped powder after annealing at for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of , and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at , the powder was transformed from amorphous to nanocrystalline with the grain size of . Soft magnetic characteristics of the powder core was optimized at with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.
        4,000원