The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene (k1) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction (k2) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content (foc) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient (KD) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient (KD) of naphthalene increased with surfactant concentration. However, the KD decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles (Kmic) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.
The applicability of in situ biobarrier or microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through column study. In this study, the effect of packing materials on the reductive dechlorination of PCE was investigated using Canadian peat, Pahokee peat, peat moss and vermicompost (or worm casting) as a biobarrier medium. Optimal conditions previously determined from a batch microcosm study was applied in this column study. Lactate/benzoate was amended as electron donors to stimulate reductive dechlorination of PCE. Hydraulic conductivity was approximately 6×10-5-8×10-5 cm/sec and no difference was found among the packing materials. The transport and dispersion coefficients determined from the curve-fitting of the breakthrough curves of Br- using CXTFIT 2.1 showed no difference between single-region and two-region models. The reductive dechlorination of PCE was efficiently occurred in all columns. Among the columns, especially the column packed with vermicompost exhibited the highest reductive dechlorination efficiency. The results of this study showed the promising potential of in situ biobarrier technology using peat and vermicompost for the remediation of groundwater contaminated with chlorinated solvents.
Basic dyes, Rhodamine 6G(R6G), Rhodamine B(RB), and Methylene Blue(MB), dissolved in water were used to investigate single-component adsorption affinity to the pearl layer fractionated according to the size. Unfractionated pearl layers were also used as adsorbents for the R6G and RB. The Langmuir and the Redlich-Peterson(RP) models were used to fit the adsorption data, and the goodness of fit was examined by using determination coefficient(R2) and standard deviation(SSE). The 3-parameter RP model was found to be better in describing the dye adsorption data than the 2-parameter Langmuir model, as can be expected from the number of parameters involved in the model. The adsorption affinity to the fractionated pearl layer was higher than that to the unfractionated layer. The affinity order to the fractionated Conchiolin layer was found to be R6G > MB > RB. Furthermore, the dye adsorption capacity of the various types of pearl layer was found to be in the order, the fractionated pearl > powdered pearl > unfractionated pearl, exhibiting different adsorption isotherms according to the types of layer used in the study.
In order to develop a dye coloring technology on Conchiolin layer in cultured pearls, appropriate dyes were selected, their solubilities in various solvents were studied, and adsorption and desorption experiments were performed. Solubilities of several basic dyes known to suitable for the pearl coloring, i.e., Rhodamine 6G(R6), Rhodamine B(RB) and Methylene Blue(MB), in several solvents (distilled water, methanol, ethanol, and acetone) were investigated. Among these dyes, R6 was chosen as a dye for single component adsorption and desorption experiment due to the relatively good solubility in various solvents tested. Solubilities of dyes were judged to be enough to color the pearls since dye concentrations in pearl coloring are, in general, not so high. The internal surface area of the pearl layer is believed to be directly related to the dye adsorption; the single-point internal surface area of the pearl layer measured at the nitrogen relative pressure of 0.3 was found to be 0.913㎡/g, and the BET internal surface area, 1.01㎡/g. The most probable diameters of micropores and macropores were found to be 40Å and 5000Å, repectively, from the pore size distribution d/ata. Adsorption isotherm was well fitted to the Langmuir isotherm model, resulting in q=1.62C/1+1.09C˙
This study evaluated the technical feasibility of the application of TiO2 photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.