1개월과 3개월 장기 예보를 지원하기 위해 기상청에서 현업운용 중인 GloSea6 기후예측시스템에는 대기 중 대 기화학-에어로졸 물리과정(UKCA)이 연동되어 있지 않다. 본 연구에서는 저해상도의 GloSea6와 여기에 대기화학-에어로 졸 과정을 연동시킨 GloSea6-UKCA를 CentOS 기반 리눅스 클러스터에 설치하여 2000년 봄철에 대한 예비적인 예측 결과를 살펴보았다. 현업 고해상도 GloSea6 모델이 방대한 전산자원을 필요로 한다는 점을 고려할 때, 저해상도 GloSea6와 GloSea6-UKCA 모델은 대기화학-에어로졸 과정의 연동에 따른 효과를 살펴보기에 적합하다. 저해상도 GloSea6와 GloSea6-UKCA는 2000년 3월 1일 00Z부터 75일 간 구동되었으며, 두 모델이 예측한 2000년 4월 지상 기온과 일평균 강수량의 공간 분포를 ERA5 재분석자료와 비교하였다. GloSea6-UKCA가 예측한 기온과 강수 분포는 기존 GloSea6에 비해 ERA5 재분석자료에 보다 더 유사해졌다. 특히 우리나라를 포함한 동아시아 지역에 대해 과대 모의 경 향이 있던 봄철 지상 기온과 일평균 강수량의 예측 결과의 개선이 주목할 만하다. 또한 적분 시간에 따른 예측된 기온 과 강수량의 시계열에서도 GloSea6-UKCA가 GloSea6보다 재분석자료에 더 가까워진 시간 변화 경향을 살펴볼 수 있었 다. 이는 대기화학-에어로졸 과정이 GloSea6에 연동되었을 때 동아시아지역 봄철 예측 성능이 개선될 수 있음을 보여준다.
지구 대기에 영향을 주는 거의 모든 인간활동과 자연현상을 수치적으로 담아내는 지구시스템모델은 기후 위기 의 시대에 활용될 가장 진보한 과학적 도구이다. 특히 우리나라 기상청이 도입한 지구시스템모델인 Unified Model (UM)은 지구 대기 연구의 과학적 도구로써 매우 활용성이 높다. 하지만 UM은 수치 적분과 자료 저장에 방대한 자원 이 필요하여 개별 연구자들은 최근까지도 기상청 슈퍼컴퓨터에만 UM을 가동하는 상황이다. 외부와 차단된 기상청 슈 퍼컴퓨터만을 이용하여 모델 연구를 수행하는 것은 UM을 이용한 모형 개선과 수치 실험의 원활한 수행에 있어 효율성이 떨어진다. 본 연구는 이러한 한계점을 극복할 수 있도록 개별 연구자가 보유한 고성능 병렬 컴퓨터(리눅스 클러스터) 에서 최신 버전 UM을 원활하게 설치하여 활용할 수 있도록 UM 시스템 환경 구축 과정과 UM 모델 설치 과정을 구 체적으로 제시하였다. 또한 UM이 성공적으로 설치된 리눅스 클러스터 상에서 N96L85과 N48L70의 두 가지 모형 해 상도에 대하여 UM 가동 성능을 평가하였다. 256코어를 사용하였을 때, 수평으로 1.875o ×1.25o(위도×경도)와 수직으로 약 85 km까지 85층 해상도를 가진 N96L85 해상도에 대한 UM의 AMIP과 CMIP 타입 한 달 적분 실험은 각각 169분 과 205분이 소요되었다. 저해상도인 3.75o ×2.5o와 70층 N48L70 해상도에 대해 AMIP 한달 적분은 252코어를 사용하여 33분이 소요되는 적분 성능을 보였다. 또한 적분을 위해 사용된 코어의 개수에 비례하여 적분 성능이 향상되었다. 성능 평가 외에 29년 간의 장기 적분을 수행하여 과거 지상 2-m 온도와 강수 강도를 ERA5 재분석자료와 비교하였고, 해상 도에 따른 차이도 정성적으로 살펴보았다. 재분석자료와 비교할 때, 공간 분포가 유사하였고, 해상도와 대기-해양 접합 에 따라 모의 결과에서 차이가 나타났다. 본 연구를 통해 슈퍼컴퓨터가 아닌 개별 연구자의 고성능 리눅스 클러스터 상에서도 UM이 성공적으로 구동됨을 확인하였다.
본 연구는 기상청에서 운용 중인 영국 the United Kingdom Earth System Model (UKESM)을 리눅스 클러스터 에 설치하여 과거 28년 기간에 대해 적분을 수행하고, 추가적인 수치 실험을 수행하여 얻은 결과와 비교한다. 설치한 UKESM은 저해상도 버전이지만, 대류권 대기 화학-에어로졸 과정과 성층권 오존 화학 과정을 동시에 모의하는 United Kingdom Chemistry and Aerosol (UKCA) 모듈을 포함하고 있는 최신 버전이다. 본 연구에 사용된 UKCA가 포함된 UKESM (UKESM-UKCA)은 전체 대기에서의 화학, 에어로졸, 구름, 복사 과정이 연동된 모델이다. CMIP5 기존 배출 량 자료를 사용하는 UKESM 기준 적분 수치 모의와 함께, 동아시아 지역 이산화황(SO2) 배출이 기상장에 미치는 영향 을 평가하기 위하여 CMIP5 SO2 배출량 대신 최신의 REAS 배출자료로 교체한 실험 적분 수치 모의를 수행하였다. 두 수치 모의의 기간은 모두 1982년 1월 1일부터 2009년 12월 31일까지 총 28년이며, 모델 결과는 동아시아 지역 에 어로졸 광학 두께, 2-m 온도, 강수 강도의 시간 평균값과 시간 변화 경향의 공간 분포를 분석하고 관측자료와 비교하 였다. 모델에서 얻어진 온도와 강수 강도의 공간 분포 패턴은 관측자료와 전반적으로 유사하였다. 또한 UKESM에서 모의된 오존 농도와 오존전량의 공간 분포도 위성 관측 자료와 분포 패턴이 일치하였다. 두 UKESM 실험 적분 모의 결과로 얻어진 온도와 강수 강도의 선형 변화 경향의 비교를 통해, 동아시아 지역 SO2 지면 배출은 서태평양과 중국 북부지역에 대한 온도와 강수량의 변화 경향에 중요한 요인임을 확인할 수 있었다. 본 연구를 통해 슈퍼컴퓨터에서만 운용되던 UKESM이 리눅스 클러스터 컴퓨팅 환경에도 설치되어 운용이 가능하다는 점을 제시한다. 대기 환경 및 탄소 순환을 연구하는 다양한 분야의 연구자들에게도 대기-해양-지면-해빙이 상호작용하는 UKESM와 같은 지구시스템모델이 활용될 가능성과 접근성이 높아졌다.
2015년 ‘파리협정’ 및 2021년 ‘기후위기 대응을 위한 탄소중립·녹색성장 기본법’ 제정에 따라 2030년 국가 온 실가스 감축목표(NDC, 2018년 대비 40% 감축) 달성을 위해서는 지자체별 적절한 온실가스 감축 목표 설정과 이행 노 력이 필수적이다. 이에 이 연구에서는 충청북도 지역을 중심으로 1990-2018년 까지 온실가스 배출 현황을 시계열로 분석하였고, 2030년 국가 온실가스 감축목표와 시나리오를 바탕으로 충청북도의 2030년 온실가스 감축 목표를 제안하였 다. 또한 감축 목표 달성을 위해 BAU 대비 장래 배출량을 고려한 2030년까지의 감축 잠재량을 추정하였다. 그 결과, 첫째, 우리나라와 충북의 온실가스 배출량은 1990년 이래 인구 및 경제 성장에 따라 증가해온 것으로 나타났으며, 2018년 국가 대비 충북의 온실가스 배출량은 3.9%로 매우 낮은 편이였고, 시멘트 및 석회 생산, 제조업 및 건설업, 수 송업 등 연료연소에 의한 배출이 주를 이루는 것으로 나타났다. 둘째, 2030년 NDC 및 2050 탄소중립 시나리오를 반 영한 2030년 충청북도 온실가스 감축 목표는 2018년 대비 40.2%로 설정하였다. 이에 장래 배출량을 고려할 경우 목표 달성을 위한 감축 잠재량은 2018년 대비 46.8%인 것으로 추정되었다. 상기 결과는 국가 및 지자체의 온실가스 감축 목표 달성을 위해서는 분야별 온실가스 감축 수단을 통한 감축 잠재량을 충족하는 것이 중요하다는 것을 의미한다. 또 한 2030년 NDC 및 2050 탄소중립 시나리오 달성을 위해 충북을 포함한 국가 및 각 지자체는 온실가스 장래 배출량 을 연도별로 추정하여 매년 감축 목표와 감축 잠재량을 구하고 이를 삭감할 수 있는 구체적인 감축 수단을 마련할 필 요가 있음을 말해준다.
본 연구에서는 고해상도 ERA5 재분석자료 중 우리나라 지상 온도 자료의 신뢰성을 검증할 목적으로 종관기상 관측소(ASOS) 관측자료와 비교를 수행하였다. 새롭게 생산되어 배포 중인 ERA5 재분석자료는 높은 시·공간적 해상도를 가져 여러 분야에 활용성이 매우 높다. 자료의 분석 기간은 ASOS 61개 관측소가 1999년 이후로 결측률이 매우 낮으며 시간평균 자료를 제공한다는 점을 고려하여 1999-2018년 기간으로 설정하였다. ERA5 격자 자료는 격자 내 90-m 수치표고모델(DEM) 분포로부터 내륙, 해안, 산악 지역에 해당하는 지형학적인 특성에 따라 분류하여 ASOS 지점 자료와 비교되었다. 분석 기간 전체에 대한 평균 지상 온도는 ASOS와 ERA5 모두 공간 분포의 패턴과 값은 큰 차이없이 유사하였다. ASOS와 ERA5의 산점도 비교를 통해 전체 기간, 특히 여름, 겨울 기간에 대해 계절 변동성을 가진다는 특성을 확인할 수 있었으며, 이는 달별 두 자료 사이의 매시간 차이 확률밀도함수(PDF)의 시계열을 통해서도 확인되었다. 두 자료 사이의 차이를 통계지수인 NMB, RMSE를 계산하여 정량화시켰을 때, 각 값에서 지역적인 특성을 보였으나 모든 지수에서 큰 차이가 없다고 판단할 수 있었으며, 상관성을 보기 위해 R과 IOA를 통해 구한 값은 모두 0.99에 근접하였다. 특히 일평균 산출에 있어 1-시간-평균 값 24개를 이용한 일평균의 경우가 최고와 최저온도의 평균을 이용 하는 일평균에 비해 오차가 작게 나타났고, 두 자료 사이의 상관성도 높게 나타남을 확인하였다. 두 자료의 차이가 나타나는 원인으로 ERA5 격자 내 지형 효과가 가장 클 것으로 판단하여 수치표고모델을 활용하여 각 지역별 PDF를 이용해 첨도 및 왜도를 구하고, 이를 온도 차이 파워 스펙트럼의 1년 주기 변동 크기와 비교하였다. 그 결과, 양의 상관성을 가졌음을 확인하였다. 이는 지형 효과가 두 자료 차이의 원인이라고 설명하는 결과이다.