1개월과 3개월 장기 예보를 지원하기 위해 기상청에서 현업운용 중인 GloSea6 기후예측시스템에는 대기 중 대 기화학-에어로졸 물리과정(UKCA)이 연동되어 있지 않다. 본 연구에서는 저해상도의 GloSea6와 여기에 대기화학-에어로 졸 과정을 연동시킨 GloSea6-UKCA를 CentOS 기반 리눅스 클러스터에 설치하여 2000년 봄철에 대한 예비적인 예측 결과를 살펴보았다. 현업 고해상도 GloSea6 모델이 방대한 전산자원을 필요로 한다는 점을 고려할 때, 저해상도 GloSea6와 GloSea6-UKCA 모델은 대기화학-에어로졸 과정의 연동에 따른 효과를 살펴보기에 적합하다. 저해상도 GloSea6와 GloSea6-UKCA는 2000년 3월 1일 00Z부터 75일 간 구동되었으며, 두 모델이 예측한 2000년 4월 지상 기온과 일평균 강수량의 공간 분포를 ERA5 재분석자료와 비교하였다. GloSea6-UKCA가 예측한 기온과 강수 분포는 기존 GloSea6에 비해 ERA5 재분석자료에 보다 더 유사해졌다. 특히 우리나라를 포함한 동아시아 지역에 대해 과대 모의 경 향이 있던 봄철 지상 기온과 일평균 강수량의 예측 결과의 개선이 주목할 만하다. 또한 적분 시간에 따른 예측된 기온 과 강수량의 시계열에서도 GloSea6-UKCA가 GloSea6보다 재분석자료에 더 가까워진 시간 변화 경향을 살펴볼 수 있었 다. 이는 대기화학-에어로졸 과정이 GloSea6에 연동되었을 때 동아시아지역 봄철 예측 성능이 개선될 수 있음을 보여준다.
본 연구는 기상청에서 운용 중인 영국 the United Kingdom Earth System Model (UKESM)을 리눅스 클러스터 에 설치하여 과거 28년 기간에 대해 적분을 수행하고, 추가적인 수치 실험을 수행하여 얻은 결과와 비교한다. 설치한 UKESM은 저해상도 버전이지만, 대류권 대기 화학-에어로졸 과정과 성층권 오존 화학 과정을 동시에 모의하는 United Kingdom Chemistry and Aerosol (UKCA) 모듈을 포함하고 있는 최신 버전이다. 본 연구에 사용된 UKCA가 포함된 UKESM (UKESM-UKCA)은 전체 대기에서의 화학, 에어로졸, 구름, 복사 과정이 연동된 모델이다. CMIP5 기존 배출 량 자료를 사용하는 UKESM 기준 적분 수치 모의와 함께, 동아시아 지역 이산화황(SO2) 배출이 기상장에 미치는 영향 을 평가하기 위하여 CMIP5 SO2 배출량 대신 최신의 REAS 배출자료로 교체한 실험 적분 수치 모의를 수행하였다. 두 수치 모의의 기간은 모두 1982년 1월 1일부터 2009년 12월 31일까지 총 28년이며, 모델 결과는 동아시아 지역 에 어로졸 광학 두께, 2-m 온도, 강수 강도의 시간 평균값과 시간 변화 경향의 공간 분포를 분석하고 관측자료와 비교하 였다. 모델에서 얻어진 온도와 강수 강도의 공간 분포 패턴은 관측자료와 전반적으로 유사하였다. 또한 UKESM에서 모의된 오존 농도와 오존전량의 공간 분포도 위성 관측 자료와 분포 패턴이 일치하였다. 두 UKESM 실험 적분 모의 결과로 얻어진 온도와 강수 강도의 선형 변화 경향의 비교를 통해, 동아시아 지역 SO2 지면 배출은 서태평양과 중국 북부지역에 대한 온도와 강수량의 변화 경향에 중요한 요인임을 확인할 수 있었다. 본 연구를 통해 슈퍼컴퓨터에서만 운용되던 UKESM이 리눅스 클러스터 컴퓨팅 환경에도 설치되어 운용이 가능하다는 점을 제시한다. 대기 환경 및 탄소 순환을 연구하는 다양한 분야의 연구자들에게도 대기-해양-지면-해빙이 상호작용하는 UKESM와 같은 지구시스템모델이 활용될 가능성과 접근성이 높아졌다.
북대서양 자오면 순환(AMOC)은 그린란드 부근에서 고밀도 해수의 침강으로 유도되는데, 이것은 열과 물질을 수송시키기 때문에 기후 시스템의 중요한 요소이다. 이 연구는 전 지구 기후모델 중 하나인 HadGEM2-AO 모델에서 모의된 AMOC의 특징과 장기변동 메커니즘을 분석하였다. AMOC 지수를 이용한 지연 상관 분석을 통해 AMOC의 수십 년 변화는 해양 자체유지 변동으로 간주할 수 있었다. 즉 AMOC의 장기 변화는 남북 수온 경도와 해양 순환의 위상차로 인해 발생하는 불안정성에 의한 것으로 분석되었다. AMOC가 강해지면서 열의 북향 수송에 의해 남북 수온 경도가 작아지고, 따라서 해수의 순환과 열 수송이 줄어드는데, 이와 함께 고위도에서는 냉각이 유도되어 결과적으로 다시 AMOC가 강해지게 된다. 이 메커니즘은 저위도로부터 이류되는 열의 양에 따라 고위도 지역의 밀도 변화가 결정되기 때문에 AMOC의 변동을 염분 유도가 아닌 열적 유도 과정으로 이해할 수 있다.
대기 중 이산화탄소 등의 농도가 지속적으로 증가하고 있음에도 최근 10여 년 동안(2002-현재) 전지구 지표 온도는 거의 답보상태에 머물러 있다. 이처럼 온실기체 강제력에도 불구하고, 지구 온난화 경향이 사라진 듯 보이는 현상을 지구 온난화 멈춤(hiatus)이라 한다. 이 연구는 HadGEM2-AO가 모의한 RCP8.5 시나리오 실험(95년간) 자료를 분석하여, 온난화 멈춤 시기의 특징을 분석하였다. 온난화 멈춤 기간을 나타내는 시계열은 동서 평균한 연직 해수 온도 분포를 EOF 분석하여 구한 두 번째 PC (PC2)로 정의하였다. PC2를 이용하여 온난화 멈춤과 엔소와의 관련성, 기후시스템의 변화 등을 분석하였다. 라니냐 지수(NINO3지수에 -1을 곱하여 정의)가 PC2를 약 11개월 앞서는 것으로 보아 라니냐 발생이 온난화 멈춤을 유도할 수 있음을 발견하였다. 또한 기후시스템의 냉각은 해수 표층의 열이 해양 내부로 침강으로 나타남을 보였다. 이는 해양의 열흡수에 의해 전지구 온도 상승률이 약화되었음을 의미한다. 온난화 멈춤 시기에 북태평양과 북반구 극지는 양의 온도 편차가 나타났으며, 열대 해양에서는 무역풍이 강화되었다.
Future changes in mineral dust emission are studied using CMIP5 models. These models simulate climatological spatial distribution of dust emission over the observed major sources; Sahara Desert to Arabia and Southwest Asia. Model estimates for the range of global dust emission simulation appear large in the quantity of dust produced and the amplitude of interannual variability. According to the ensemble mean in global annual emissions, projections of four RCPs do not have significant long-term trends in mineral dust aerosol emissions at the end of 21st century. Meanwhile over Northeast Asia, annual emissions are projected to decrease significantly in four RCPs. Reductions appear over the major sources of mineral dust. Seasonally emission reduction in spring is distinct. In April and May, future changes with decreasing emission appear only in RCP4.5 with significance. Aerosol emission amount changes are related to changes in land surface property. We analyze future projection of soil moisture and bare soil area fraction. Regarding the projected decreasing trend in the annual emission amount over Northeast Asia, soil moisture is expected to increase in the emission source region in four RCPs. Relatively, the effect of bare soil area changes over the emission source appears in some models and RCPs.