In order to investigate the formation of AlN, mechanical alloying was carried out in and atmosphere. Differential thermal analysis (DTA), x-ray diffraction (XRD) and chemical analysis were carried out to examine the formation behavior of aluminum nitrides. No diffraction pattern of AlN was observed in XRD analysis of the as-milled powders in atmosphere. However, DTA and chemical analysis indicated that the precursors for AlN were formed in the Al powders milled in atmosphere. The AlN precursors transformed to AlN after heat treatment at and above . It was considered that the reaction between Al and was possible by the formation of fresh Al surface during mechanical alloying of Al powders.
Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.