검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A 1,000 m3/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 μm showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.
        4,000원
        2.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the physicochemical characteristics and fluoride adsorption capacity of the bone char pyrolyzed at different temperatures; 200℃, 300℃, 350℃, 400℃, 500℃, 600℃, and 700℃ were investigated. Analytical studies of the synthesized bone char including; SEM-EDS, XRD, BET and FT-IR, showed the presence of hydroxyapatite(HAP), which is the main substance that adsorbs fluoride from aqueous solutions containing high fluoride concentrations. Bone char pyrolyzed from 350∼700℃ specifically revealed that, the lower the temperature, the higher the fluoride adsorption capacity and vice versa. The loss of the fluoride adsorption function of HAP (OH- band in the FTIR analysis) was interpreted as the main reason behind this inverse correlation between temperature and fluoride adsorption. Bone char produced at 350°C hence exhibited a fluoride adsorption capacity of 10.56 mgF/g, resulting in significantly higher adsorption compared to previous studies.
        4,000원
        3.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at 5˚C in a bench-scale batch disinfection system. The inactivation of φX174 was relatively rapid and reached ∼4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for φX174 and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.
        4,000원
        4.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        The primary purpose of this study was to determine the risk of various disease outcomes due to exposure to cyanobacteria toxin (microcystin-LR) through drinking water in a Korean watershed. In order to determine the risk in a more quantitative way, the risk assessment framework developed by the National Research Council (NRC) of the United States (US) - hazard identification, dose-response relationship, exposure assessment, and risk characterization - was used in this study. For dose-response relationships, a computer software (BenchMark Dose Software (BMDS)) developed by the US Environmental Protection Agency (EPA) was used to fit the data from previous studies showing the relationship between the concentration of microcystin-LR and various disease outcomes into various dose-response models. For exposure assessment, the concentrations of microcystin-LR in the source water and finished water in a Korean watershed obtained from a recent study conducted by the Ministry of Environment of Korea were used. Finally, the risk of various disease outcomes due to exposure to cyanobacteria toxin (microcystin-LR) through drinking water was characterized by Monte-Carlo simulation using Crystall Ball program (Oracle Inc.) for adults and children. The results of this study suggest that the risk of disease due to microcystin-LR toxin through drinking water is very low and it appears that current water treatment practice should be able to protect the public from the harmful effects of cyanobacteria toxin (microcystin-LR) through drinking water.
        5.
        2016.01 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to analyse the runoff characteristics of non-point pollution sources in an urban watershed and determine the effectiveness of newly installed riverwater treatment system to reduce water pollution caused by storm runoff in the urban watershed. The results of this study showed that the levels of BOD5 and suspended solid were highly influenced by first-flush effect and the pollutant load of those two parameters were also very high in the urban watershed. Meanwhile, the effectiveness of riverwater treatment system to reduce the levels of BOD5 and suspended solid was relatively high, but those to reduce the levels of T-N and T-P was low, which needs some additional unit treatment process such as filtration and coagulation. Nonetheless, the riverwater treatment system tested was relatively simple in installation and operation, effective in removing many water pollutants and, most importantly, does not require much space as other treatment systems, so it could be an attractive alternative option to reduce riverwater pollution caused by storm runoff in urban watersheds.