The Occupational Safety and Health Act (OSHA) aims to maintain and promote the safety and health of workers. Additionally, violations of the act can result in imprisonment or fines, depending on the severity of the offense. This study examines whether the severity of OSHA violations is proportional to the size of the fines imposed. There are 120 items subject to fines, with penalties ranging from a minimum of 50,000 won to a maximum of 30 million won. To assess the severity of these items, pairwise comparisons were conducted, and the results were expressed numerically. In summary, no significant correlation was found between the severity of violations and the amount of the fines. Therefore, this study proposes calculating fines based on the severity of violations. In many small companies, resources (e.g., budget and manpower) are limited. Thus, greater attentions tend to be directed toward addressing items with higher fines. Consequently, aligning the severity of legal violations with the size of the fines may contribute to improving the industrial safety.
RAM represents reliability, availability, and maintenance, and is a key performance indicator that is utilized throughout the life cycle of the weapon system from the stage of requesting to disposal. If the RAM target value is set to a too high value, development may be delayed or development cost may be increased. If it is set to a too low value, frequent failures may occur during training, or a problem may arise that the number of available weapon systems is insufficient. The currently most used method to set the RAM target value is to write an operation mode summary and calculate it through an equation. However, as the definition of the operation mode is not standardized, different RAM target values may be set depending on the authoring organization. This study aims to analyze the current situation and suggest an alternative to this problem.
When considering military operations that require rapid response time, forward supply operation of various type of ammunition is essential. Also, t is necessary to supply ammunition in a timely manner before an ammunition shortage situation occurs. In this study, we propose a mathematical model for allocation of ammunition to ammunition storehouse at the Ammunition Supply Post (ASP). The model has several objectives. First, it ensures that the frequent used ammunition is stored in a distributed manner at a high workability ammunition storehouses. Second, infrequent used ammunition is required to be stored intensively at a single storehouse as much as possible. Third, capacity of the storehouse and compatible storage restriction required to be obeyed. Lastly, criticality of ammunition should be considered to ensure safety distance. We propose an algorithm to find the pareto-based optimal solution using the mathematical model in a reasonable computation time. The computational results show that the suggested model and algorithm can solve the real operational scale of the allocation problem.