This study aims to develop a regression model using data from the Ammunition Stockpile Reliability Program (ASRP) to predict the shelf life of 81mm mortar high-explosive shells. Ammunition is a single-use item that is discarded after use, and its quality is managed through sampling inspections. In particular, shelf life is closely related to the performance of the propellant. This research seeks to predict the shelf life of ammunition using a regression model. The experiment was conducted using 107 ASRP data points. The dependent variable was 'Storage Period', while the independent variables were 'Mean Ammunition Velocity,' 'Standard Deviation of Mean Ammunition Velocity,' and 'Stabilizer'. The explanatory power of the regression model was an R-squared value of 0.662. The results indicated that it takes approximately 55 years for the storage grade to change from A to C and about 62 years to change from C to D. The proposed model enhances the reliability of ammunition management, prevents unnecessary disposal, and contributes to the efficient use of defense resources. However, the model's explanatory power is somewhat limited due to the small dataset. Future research is expected to improve the model with additional data collection. Expanding the research to other types of ammunition may further aid in improving the military's ammunition management system.
The Occupational Safety and Health Act (OSHA) aims to maintain and promote the safety and health of workers. Additionally, violations of the act can result in imprisonment or fines, depending on the severity of the offense. This study examines whether the severity of OSHA violations is proportional to the size of the fines imposed. There are 120 items subject to fines, with penalties ranging from a minimum of 50,000 won to a maximum of 30 million won. To assess the severity of these items, pairwise comparisons were conducted, and the results were expressed numerically. In summary, no significant correlation was found between the severity of violations and the amount of the fines. Therefore, this study proposes calculating fines based on the severity of violations. In many small companies, resources (e.g., budget and manpower) are limited. Thus, greater attentions tend to be directed toward addressing items with higher fines. Consequently, aligning the severity of legal violations with the size of the fines may contribute to improving the industrial safety.
This study analyzes the impact of occupational health risk assessments on the safety and health levels and the safety behaviors of workers in manufacturing workplaces. An online survey was conducted among 3,172 companies, yielding 637 responses. The statistical analysis on the collected responses revealed three key findings. First, the safety and health levels (safety importance, safety comprehension, safety awareness) positively influence the outcomes of occupational health risk assessments(safety practice, safety management, safety improvement) and safety behaviors (activity change, safety check). Second, the effectiveness of occupational health risk assessments has a positive impact on safety behaviors. Lastly, the effectiveness of occupational health risk assessments partially mediate the relationship between safety and health levels and safety behaviors. These findings are expected to contribute to the promotion of risk assessments in the field of industrial health and to enhancing safety performance by improving workplace safety, health levels, and safety behavior.
The purpose of this study is to use an evacuation simulation program to measure the change in evacuation time according to the width of the evacuation route due to the installation of an intermediate sales counter and the placement of a shopping cart between the sales counters of a large supermarket and to analyze the results. Currently, the “Distribution Industry Development Act” does not regulate the size and installation method of intermediate sales counters installed between sales counters that serve as practical evacuation routes in the event of a fire at a large supermarket, the size of shopping carts, etc. Considering this, we set evacuation route widths of 40, 50, 60, 70, 80, and 100 cm and compared and analyzed evacuation times according to various variables in the facility space. As a result of the experiment, as the width of the evacuation route was expanded, there was a significant difference in the evacuation time, from a maximum of 468.3 seconds to a minimum of 320.8 seconds. Considering the safety of evacuees in large supermarkets used by many people, it is time to regulate the size of intermediate sales stands installed between sales counters in large supermarkets and shopping carts that can become obstacles in an emergency.
This study aims to propose an improvement of fire safety management plans for buildings, such as apartment complexes and schools, within a 10 km radius of industrial complexes. It utilizes an off-site consequence analysis program to reflect the toxic impact on national industrial complexes and surrounding areas. The ALOHA program was utilized to analyze the impact of toxicity due to a hydrogen chloride leak, a hazardous material. The results showed that the area with AEGL-2 and above ranged from 3.1 km to 10 km, the AEGL-3 area ranged from 1.9 km to 7.3 km. The ASET was measured to be between 3 and 24 minutes. Due to the impact of toxicity, it is necessary to prepare fire safety management plans for buildings, such as apartment complexes and schools that are within a 10 km radius from industrial complexes. These safety plans incorporate the hydrogen chloride risk assessment results, ASET, weather conditions, and coordination with the local community.
The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.
This study aims to estimate the scope of damage impact with a real-life explosion case and a damage prediction program (ALOHA) and suggest measures to reduce risk by comparing and analyzing the results using a Probit model. After applying it to the ALOHA program, the toxicity, overpressure, and radiant heat damage of 5 tons of storage scopes between 66 to 413 meters, and the real-life case also demonstrated that most of the damage took place within 300 meters of the LPG gas station. In the Probit analysis, the damages due to radiant heat were estimated as first-degree burns (13-50%), while structural damage (0-75%) and glass window breakage (94-100%) were expected from overpressure, depending on the storage volume. After comparing the real-life case and the damage prediction program, this study concluded that the ALOHA program could be used as the scope of damage impacts is nearly the same as the actual case; it also concluded that the analysis using the Probit model could reduce risks by applying calculated results and predicting the probability of human casualties and structural damages.
In modern society, buildings are becoming more complex, and the population is becoming more densely populated. Such large buildings require a variety of evacuation measures, as there is a high possibility of large-scale human casualties due to increased evacuation distance and evacuation time in the event of a fire. Strobe light and exit sign light are used as important evacuation equipment to provide early warning and evacuation directions. In this thesis, we conducted a fire simulation assuming that a fire occurrence point notification function and a strobe light function were added to equipment such as visual alarms and evacuation guidance, and compared and analyzed the difference in evacuation completion time with existing equipment. The scenarios for the simulation were divided into “general fire situations” and “fire location and evacuation exit guidance situation” and the differences in evacuation completion time in the event of a fire were compared and analyzed for each floor from the 1st floor to the 3rd floor. The maximum travel distance to complete evacuation in the case of a fire on the first floor decreased by 80.6 m and the evacuation completion time decreased by 329.4 seconds, and the maximum travel distance to complete evacuation in the case of a second-floor fire decreased by 28.5 m and the evacuation completion time by 438.8 seconds. During the fire on the third floor, the maximum distance decreased until evacuation was completed to 3.4 m, and the evacuation completion time was reduced by 355.6 seconds. It is expected that if the congestion level of evacuation routes is reduced by utilizing the congestion level of evacuation exits when fire alarm systems and evacuation equipment are activated, the evacuation completion time will be further shortened and evacuations will be carried out quickly and safely.
In recent years, the number of cases caused by people such as forest fires has been increasing, so it is very important for the whole nation to prevent and practice forest fires. In addition, due to climate change around the world, many lives and disaster losses are increasing due to forest fire-related disasters, and in the last 10 years (2014-2023), there have been 5,668 forest fires and 40,037 hectares of damage, which is equivalent to 56,000 football fields, resulting in 19 casualties and 285.4 billion won in damages. Now, in order to improve the understanding and awareness of forest fires among all the people, the government should actively inform the people about how to act in the event of a forest fire by making the people's action tips related to forest fires easy to understand and practical through public relations activities. In addition, the public and the government should work together to prevent and prepare for forest fires before they occur.
Outdoor storage fires have a significant impact on the surrounding environment, including adjacent storage facilities and buildings. Therefore, it is essential to review and manage the fire impact to minimize damage to human life and property on the outdoor storage fires. In this study, the heat release rate and radiant heat flux were simulated according to the fire time, wind veolcity, and presence or absence of water spray equipment in an outdoor storage facility fire, and the fire impact was analyzed. The outdoor storage was designed to simulate two scenarios on the outdoor storage fires containing gasoline, and FDS was used for fire simulation. As a results, when the water spray facility was not operating and the wind velocity was 5 m/s, the maximum radiant heat flux was 24.80 kW/m2, which exceeded the limit radiant heat flux of 20 kW/m2. When the water spray facility was operating and the wind veolcity was 10 m/s, the maximum radiant heat flux was 18.77 kW/m2, which did not exceed the limit radiant heat flux, indicating that the fire impact on adjacent storage facilities was relatively small.
The health and working conditions of employees have become increasingly important issues in modern society. In recent years, there has been a continuous rise in problems related to the deterioration of workers’ alth, which seriously affects their safety and overall quality of life. Although existing research has investigated various factors affecting workers’ health and working conditions, there is still a lack of studies that scientifically analyze and identify key variables from the vast number of factors. This study employs the Lasso (Least Absolute Shrinkage and Selection Operator) technique to mathematically analyze the key variables influencing workers’ health status and satisfaction with their working environment. Lasso is a technique used in machine learning to identify a small number of variables that impact the dependent variable among a large set of variables, thereby reducing model complexity and improving predictive accuracy. The results of the study can be utilized in efficiently improving workers’ health and working environments by focusing on a smaller set of impactful variables.
This study aims to classify types of work-life balance among employees using Latent Profile Analysis (LPA) and investigate variations in depressive symptoms and satisfaction with working conditions across these types. Data were derived from the 6th Korean Working Conditions Survey (KWCS), conducted between 2020 and 2021, which included a sample of 49,479 employed individuals. The LPA revealed three distinct profiles of work-life balance: Low Balance (18.5%), Moderate Balance (72.9%), and High Balance (8.6%). Significant differences in depressive symptoms and satisfaction with working conditions were observed among these profiles. Specifically, the Low Balance group exhibited the highest levels of depressive symptoms and the lowest satisfaction with working conditions, while the High Balance group displayed the lowest depressive symptoms and the highest satisfaction. These findings underscore the critical role of work-life balance in influencing both depressive symptoms and job satisfaction among workers.
The forklift carry cargo and move to various places. When a forklift moves to various places, a forklift accident occurs due to a number of factors,such as speed, safe distance. Forklift accidents occur at the logistic site and there are many studies on the causes of accident such as jamming, falling, collisions, etc. However, safety operation for accident prevention is necessary before operating a forklift. Pre-accident safety precautions may prevent accidents. In this study, precautionary factors for safe operation were analyzed to prevent forklift safety accidents through the AHP technique. As a result of the study showed that safety management was the priority in the terminal group and the logistics warehouse group.
In this study, two things were analyzed for Korean Standards certification factory review evaluation items. First, it was examined whether there is a difference between the Practice of factory review evaluation items and Post-Management according to the change in perception of the factory review evaluation items of Korean Standards certification personnel. Second, the moderating effect of the Korean Standards certification personnel's perception of the effect of the Practice of the factory review evaluation items of Korean Standards certification personnel on Post-Management was verified. Although there is a statistically significant difference between Practice and Post-Management according to changes in perception of Korean Standards personnel, there is no statistically significant difference in the impact (slope) of Practice on Post-Management according to changes in perception of Korean Standards certification personnel. As the perception of factory review evaluation items increases, the Practice and Post-Management of factory review evaluation items are increasing, but the impact of the Practice of factory review evaluation items on Post-Management does not affect it. In order to further advance Korean Standards certification, which plays an important role in maintaining the quality level of products produced by companies, efforts to raise the level of perception of Korean Standards certification personnel are considered necessary.
In this paper, we aim to improve the output quality of a food 3D printer through optimized component design and implementation. Existing 3D printers produce customized outputs according to consumer needs, but have problems with output speed and poor quality. In this paper, we aim to solve this problem through optimized design of unit parts such as the extruder, nozzle, guide, and external case. Fusion 360 was used for element design, and in the performance evaluation of the implemented system, the average precision was 0.06mm, which is higher than the non-repeatable precision of ±0.1㎜ of other products, and the feed speed of the existing system was evaluated to be more than twice as fast, from 70mm/s to 140mm/s. In the future, we plan to continuously research output elements that can produce texture and color and device control methods for convenience.